
Vision HDL Toolbox™

Reference

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ Reference
© COPYRIGHT 2015–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 1.0 (Release R2015a)
September 2015 Online only Revised for Version 1.1 (Release R2015b)
March 2016 Online only Revised for Version 1.2 (Release R2016a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Blocks — Alphabetical List
1

System Objects — Alphabetical List
2

Functions — Alphabetical List
3

1

Blocks — Alphabetical List

1 Blocks — Alphabetical List

1-2

Pixel Control Bus Creator
Create control signal bus for use with Vision HDL Toolbox blocks

Library

visionhdlutilities

Description

The Pixel Control Bus Creator block creates a pixelcontrol bus. See “Pixel
Control Bus”.

The block is an implementation of the Simulink® Bus Creator block. See Bus Creator
for more information.

See Also
“Streaming Pixel Interface” | Frame To Pixels | Pixels To Frame

Introduced in R2015a

 Pixel Control Bus Selector

1-3

Pixel Control Bus Selector
Select signals from control signal bus used by Vision HDL Toolbox blocks

Library

visionhdlutilities

Description

The Pixel Control Bus Selector block selects signals from the pixelcontrol bus.
See “Pixel Control Bus”.

The block is an implementation of the Simulink Bus Selector block. See Bus
Selector for more information.

See Also
“Streaming Pixel Interface” | Frame To Pixels | Pixels To Frame

Introduced in R2015a

1 Blocks — Alphabetical List

1-4

Chroma Resampler
Downsample or upsample chrominance component

Library

visionhdlconversions

Description

The Chroma Resampler block downsamples or upsamples a pixel stream.

• Downsampling reduces bandwidth and storage requirements in a video system by
combining pixel chrominance components over multiple pixels. You can specify a filter
to prevent aliasing, by selecting the default filter or by entering coefficients.

• Upsampling restores a signal to its original rate. You can use interpolation or
replication to calculate the extra sample.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox™ blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

The block accepts luma and chrominance components. The block does not modify the
luma component, and applies delay to align it with the resampled chrominance outputs.
The rate of the output luma component is the same as the input.

 Chroma Resampler

1-5

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single pixel in Y'CbCr color space,
specified as a vector of three
values. The data type of the output
is the same as the data type of the
input.

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

1 Blocks — Alphabetical List

1-6

Dialog Box and Parameters

Main

Resampling
Resampling operation.

• 4:4:4 to 4:2:2 (default)
• 4:2:2 to 4:4:4

If you select 4:4:4 to 4:2:2, the block performs a downsampling operation. If you
select 4:2:2 to 4:4:4, the block performs an upsampling operation.

Antialiasing filter
Lowpass filter to follow a downsample operation.

• Auto (default)
• Property

 Chroma Resampler

1-7

• None

If you select Auto, the block uses a built-in lowpass filter. If you select Property, the
Horizontal filter coefficients parameter appears on the dialog box. If you select
None, the block does not filter the input signal. This parameter is visible when you
set Resampling to 4:4:4 to 4:2:2.

Horizontal filter coefficients
Coefficients for the antialiasing filter.

Enter the coefficients as a vector. The default is [0.2,0.6,0.2]. This parameter
is visible if you set Resampling to 4:4:4 to 4:2:2 and Antialiasing filter to
Property.

Interpolation
Interpolation method for an upsample operation.

• Linear (default)
• Pixel replication

If you select Linear, the block uses linear interpolation to calculate the missing
values. If you select Pixel replication, the block repeats the chrominance values
of the preceding pixel to create the missing pixel. This parameter is visible if you set
Resampling to 4:2:2 to 4:4:4.

1 Blocks — Alphabetical List

1-8

Data Types

The parameters on this tab appear only when they are relevant. If your selections on the
Main tab configure the block so that no filter coefficients are needed, or no rounding or
overflow is possible, the irrelevant parameter is hidden.

Rounding mode
Rounding method for internal fixed-point calculations. Rounding mode appears
when you select linear interpolation, or include an antialiasing filter. The default is
Floor.

Overflow mode
Overflow action for internal fixed-point calculations. Overflow can occur when you
include an antialiasing filter. The default is Wrap.

Filter coefficients
Data type for the antialiasing filter coefficients.

The default is fixdt(1,16,0). This parameter is visible when you set Antialiasing
filter to Auto or Property.

 Chroma Resampler

1-9

Algorithm

The default antialiasing filter is a 29-tap lowpass filter that matches the default Chroma
Resampling block in Computer Vision System Toolbox™. In the frequency response
of this filter, the passband, [-0.25 0.25], occupies half of the total bandwidth. This filter
suppresses aliasing after 4:4:4 to 4:2:2 downsampling.

Whether you use the default filter or specify your own coefficients, the filter is
implemented in HDL using a fully parallel architecture. HDL code generation takes
advantage of symmetric, unity, or zero-value coefficients to reduce the number of
multipliers.

The block pads the edge of the image with symmetric pixel values. See “Edge Padding”.
Also, if the frame is an odd number of pixels wide, the block symmetrically pads the line.
This accommodation makes the block more resilient to video timing variation.

1 Blocks — Alphabetical List

1-10

Latency

The latency is the number of cycles between the first valid input pixel and the first valid
output pixel. When you use an antialiasing filter, the latency depends on the size and
value of the filter coefficients. The FIR delay can be less than the number of coefficients
because the block optimizes out duplicate or zero-value coefficients.

Block Configuration Latency

Downsample (4:4:4 to 4:2:2), no filter 3
Downsample (4:4:4 to 4:2:2), with filter 4+(N/2)+FIR delay, N = number of filter

coefficients
Upsample (4:2:2 to 4:4:4), replication 3
Upsample (4:2:2 to 4:4:4), interpolation 5

For example, the latency for a downsample using the default filter is 30 cycles.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.ChromaResampler | Chroma Resampling | Frame To Pixels

Introduced in R2015a

 Closing

1-11

Closing

Morphological closing of binary pixel data

Library

visionhdlmorph

Description

The Closing block performs morphological dilation, followed by morphological erosion,
using the same neighborhood for both calculations. The block operates on a stream of
binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

1 Blocks — Alphabetical List

1-12

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods of up to 32×32 pixels. To use a structuring
element, specify Neighborhood as getnhood(strel(shape)).

The default is [0,1,0;1,1,1;0,1,0].
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest

 Closing

1-13

power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The block pads the image with zeroes for the dilation operation, and with ones for the
erosion operation. See “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Morphological closing is a compound operation. Therefore, this block contains
a second line buffer between the dilation kernel and the erosion kernel. To determine
the exact latency for any configuration of the block, monitor the number of time steps
between the input control signals and the output control signals.

The latency of the line memory includes edge padding. The latency of the kernel depends
on the neighborhood size.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

1 Blocks — Alphabetical List

1-14

See Also
visionhdl.Closing | Closing | Dilation | Erosion | Frame To Pixels | Opening

More About
• “Morphological Dilation and Erosion”
• “Structuring Elements”

Introduced in R2015a

 Color Space Converter

1-15

Color Space Converter

Convert color information between color spaces

Library

visionhdlconversions

Description

The Color Space Converter block converts between R'G'B' and Y'CbCr color spaces,
and also converts R'G'B' to intensity.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Note: The Color Space Converter block operates on gamma-corrected color spaces.
However, to simplify use of the block, the block and mask labels do not include the prime
notation.

1 Blocks — Alphabetical List

1-16

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified by a
vector of three values representing
R'G'B' or Y'CbCr, or a scalar value
representing intensity. The data
type of the output is the same as
the data type of the input.

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Conversion
Conversion that the block performs on the input video stream.

• RGB to YCbCr (default)

 Color Space Converter

1-17

• YCbCr to RGB

• RGB to intensity

The block accepts input as a vector of three values representing a single pixel. If you
choose RGB to intensity, the output is a scalar value. Otherwise, the output is a
vector of three values.

Use conversion specified by
Conversion equation to use on the input video stream. This parameter does not apply
when you set Conversion to RGB to intensity.

• Rec. 601 (SDTV) (default)
• Rec. 709 (HDTV)

Scanning standard
Scanning standard to use for HDTV conversion. This parameter applies when you set
Use conversion specified by to Rec. 709 (HDTV).

• 1250/50/2:1 (default)
• 1125/60/2:1

Algorithm

Conversion Between R'G'B' and Y'CbCr Color Spaces

The following equations define R'G'B' to Y'CbCr conversion and Y'CbCr to R'G'B'
conversion:

¢È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ ¥

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Y

Cb

Cr

R

G

B

16

128

128

A

¢
¢
¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¥

¢È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á

R

G

B

Y

Cb

Cr

B
16

128

128ÁÁ

ˆ

¯

˜
˜
˜

1 Blocks — Alphabetical List

1-18

The values in matrices A and B are based on your choices for the Use conversion
specified by and Scanning standard parameters.

Use conversion specified by = Rec. 709 (HDTV)Matrix Use conversion specified by =
Rec. 601 (SDTV) Scanning standard =

1125/60/2:1
Scanning standard =
1250/50/2:1

A 0 25678824 0 50412941 0 09790588

0 1482229 0 29099279 0 43921

. . .

. . .- - 5569

0 43921569 0 36778831 0 07142737. . .- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 0.18258588 0.61423059 0.06200706

 -0.10064373 -0.338557195 0.43921569

 0.43921569 -0.39894216 -0.04027352

ÈÈ

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 25678824 0 50412941 0 09790588

0 1482229 0 29099279 0 43921

. . .

. . .- - 5569

0 43921569 0 36778831 0 07142737. . .- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

B 1 1643836 0 1 5960268

1 1643836 0 39176229 0 81296765

1 164383

. .

. . .

.

- -

66 2 0172321 0.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1.16438356 0 1.79274107

1.16438356 -0.21324861 -0.53290933

1.164338356 2.11240179 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1643836 0 1 5960268

1 1643836 0 39176229 0 81296765

1 164383

. .

. . .

.

- -

66 2 0172321 0.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Conversion from R'G'B' to Intensity

The following equation defines conversion from R'G'B' color space to intensity:

intensity = []
¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 299 0 587 0 114. . .

R

G

B

Data Types

For fixed-point and integer input, the block converts matrix A to fixdt(1,17,16), and
matrix B to fixdt(1,17,14).

For double or single input, the block applies the conversion matrices in double type, and
scales the Y'CbCr offset vector ([16,128,128]) by 1/255. The block saturates double or
single R'G'B' and intensity outputs to the range [0,1].

The Y'CbCr standard includes headroom and footroom. For 8-bit data, luminance values
16–235, and chrominance values 16–240, are valid. The Color Space Converter
block pins out-of-range input to these limits before calculating the conversion. The
block scales the offset vector and the allowed headroom and footroom depending on
the word length of the input signals. For example, when you convert a Y'CbCr input of
type fixdt(0,10,0) to R'G'B', the block multiplies the offset vector by 2(10 – 8) = 4. As
a result, the valid luminance range becomes 64–940 and the valid chrominance range
becomes 64–960.

 Color Space Converter

1-19

Latency

Blocks with R'G'B' input have a latency of 9 cycles. Blocks with Y'CbCr input have a
latency of 10 cycles because one cycle is required to check for and correct headroom and
footroom violations.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.ColorspaceConverter | Color Space Conversion | Frame To Pixels

Introduced in R2015a

1 Blocks — Alphabetical List

1-20

Demosaic Interpolator

Construct RGB pixel data from Bayer pattern pixels

Library

visionhdlconversions

Description

The Demosaic Interpolator block provides a Bayer pattern interpolation filter for
streaming video data. The block implements the calculations using hardware-efficient,
multiplier-free algorithms for HDL code generation. You can select a low complexity
bilinear interpolation, or a moderate complexity gradient-corrected bilinear interpolation.

• When you choose bilinear interpolation, the block operates on a 3×3 pixel window
using only additions and bit shifts.

• When you choose gradient correction, the block operates on a 5×5 pixel window. The
calculation is performed using bit shift, addition, and low order Canonical Signed
Digit (CSD) multiplication.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

 Demosaic Interpolator

1-21

Signal Attributes

Port Direction Description Data Type

pixel Input Single pixel, specified as a scalar
value.

• uint or int
• fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single pixel in RGB color space,
returned as a vector of three
values.

Same as the inputpixel

1 Blocks — Alphabetical List

1-22

Dialog Box and Parameters

Interpolation algorithm
Algorithm the block uses to calculate the missing pixel values.

• Bilinear — Average of the pixel values in the surrounding 3×3 neighborhood.
• Gradient-corrected linear (default) — Bilinear average, corrected for

intensity gradient.

Sensor alignment
Color sequence of the pixels in the input stream.

Select the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels
in the top-left corner of the input image. Specify the sequence in left-to-right, top-to-
bottom order. For instance, the default RGGB represents an image with this pattern.

 Demosaic Interpolator

1-23

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. When you select Bilinear interpolation, the block allocates 2-by-Line
buffer size memory locations. When you select Gradient-corrected linear
interpolation, the block allocates 4-by-Line buffer size memory locations. The
default value is 2048.

Algorithm

The block pads the edges of the image with symmetric pixel values. See “Edge Padding”.

Interpolation

Bilinear Interpolation

The block interpolates the missing color values using a 3×3 neighborhood. The average
is calculated over the adjacent two pixels or four pixels, depending on the sensor color
pattern. The block implements this algorithm using only add and shift operations.

Gradient-Corrected Linear Interpolation

Gradient correction improves interpolation performance across edges by taking
advantage of the correlation between the color channels. The block calculates the missing
color values using bilinear interpolation, and then modifies the value corresponding
to the intensity gradient calculated over a 5×5 neighborhood. The block applies the
gradient correction using a fixed set of filter kernels. The filter coefficients were designed
empirically to perform well over a wide range of image data. The coefficients are
multiples of powers of two to enable an efficient hardware implementation. See [1].

Latency

The block buffers one line of input pixels before starting bilinear interpolation
calculations. The gradient correction calculation starts after the block buffers 2 lines.

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency

1 Blocks — Alphabetical List

1-24

for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

References

[1] Malvar, Henrique S., Li-wei He, and Ross Cutler. “High-Quality Linear Interpolation
for Demosaicing of Bayer-Patterned Color Images.” Microsoft Research, May
2004. http://research.microsoft.com/pubs/102068/Demosaicing_ICASSP04.pdf.

See Also
visionhdl.DemosaicInterpolator | Demosaic | Frame To Pixels

Introduced in R2015a

 Dilation

1-25

Dilation

Morphological dilation of binary pixel data

Library

visionhdlmorph

Description

The Dilation block replaces each pixel with the local maximum of the neighborhood
around the pixel. The block operates on a stream of binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

1 Blocks — Alphabetical List

1-26

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods of up to 32×32 pixels. To use a structuring
element, specify Neighborhood as getnhood(strel(shape)).

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest

 Dilation

1-27

power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The block pads the image with zeroes for the dilation operation. See “Edge Padding”.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

The latency of the kernel depends on the neighborhood size.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.Dilation | Erosion | Frame To Pixels

1 Blocks — Alphabetical List

1-28

More About
• “Morphological Dilation and Erosion”
• “Structuring Elements”

Introduced in R2015a

 Edge Detector

1-29

Edge Detector

Find edges of objects

Library

visionhdlanalysis

Description

The Edge Detector block finds the edges in a grayscale pixel stream using the Sobel,
Prewitt, or Roberts method. The block convolves the input pixels with derivative
approximation matrices to find the gradient of pixel magnitude along two orthogonal
directions. It then compares the sum of the squares of the gradients to the square of a
configurable threshold to determine if the gradients represent an edge.

By default, the block returns a binary image as a stream of pixel values. A pixel value of
1 indicates that the pixel is an edge. You can disable the edge output. You can also enable
output of the gradient values in the two orthogonal directions at each pixel.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

1 Blocks — Alphabetical List

1-30

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as a
scalar value.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Th Input
(optional)

Threshold value that defines an
edge, specified as a scalar. The
block compares the square of this
value to the sum of the squares of
the gradients.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

Edge Output
(optional)

Pixel value indicating whether
the pixel is an edge, returned as a
scalar binary value.

boolean

Gv, Gh Output
(optional)

Vertical and horizontal gradient
values. These ports are visible
when you choose the Sobel or
Prewitt method.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

G45, G135 Output
(optional)

Orthogonal gradient values. These
ports are visible when you choose
the Roberts method.

Same as Gv, Gh

ctrl Output Control signals describing the
validity of the pixel and the
location of the pixel within

pixelcontrol

 Edge Detector

1-31

Port Direction Description Data Type

the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

Dialog Box and Parameters

Main

Method
Edge detection algorithm.

Select Sobel, Prewitt, or Roberts method.

1 Blocks — Alphabetical List

1-32

Output the binary image
Enable the Edge output port.

When selected, the block returns a stream of binary pixels representing the edges
detected in the input frame. By default, this check box is selected. You must select at
least one of Output the binary image and Output the gradient components.

Output the gradient components
Enable the gradient output ports.

When selected, two output ports return values representing the gradients calculated
in the two orthogonal directions. By default, this check box is not selected. When you
set Method to Sobel or Prewitt, the output ports Gv and Gh appear on the block.
When you set Method to Roberts, the output ports G45 and G135 appear on the
block.

You must select at least one of Output the binary image and Output the
gradient components.

Source of threshold value
Source for the gradient threshold value that indicates an edge.

You can set the threshold from an input port or from the dialog box. The default
value is Property. If you select Input port, the Th port appears on the block icon.

Threshold value
Gradient threshold value that indicates an edge.

The block compares the square of this value to the sum of the squares of the
gradients. The block casts this value to the data type of the gradients. The default
value is 20. This option is visible when you set Source of threshold value to
Property.

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (N - 1)-by-Line buffer size memory locations to
store the pixels, where N is the number of lines in the differential approximation
matrix. If you set Method to Sobel or Prewitt, then N is 3. If you set Method to
Roberts, then N is 2. The default value is 20.

 Edge Detector

1-33

Data Types

1 Blocks — Alphabetical List

1-34

Rounding mode
Rounding mode for internal fixed-point calculations. The default is Floor.

Overflow mode
Overflow mode for internal fixed-point calculations. The default is Wrap.

Gradient Data Type
Data type for the two gradient output ports.

If you select the Output the gradient components check box on the Main tab, the
Gradient Data Type appears on this tab. The default is Inherit via internal rule,
which means the block automatically chooses full-precision data types.

Algorithm

The Edge Detector block provides three methods for detecting edges in an input image.
The methods use different derivative approximation matrices to find two orthogonal

 Edge Detector

1-35

gradients. The Sobel and Prewitt methods calculate the gradient in horizontal and
vertical directions. The Roberts method calculates the gradients at 45 degrees and 135
degrees. The block uses the same matrices as the Edge Detection block in Computer
Vision System Toolbox.

Method Direction 1 Direction 2

Sobel
1

8

1 0 1

2 0 2

1 0 1

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

8

1 2 1

0 0 0

1 2 1- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Prewitt
1

6

1 0 1

1 0 1

1 0 1

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

6

1 1 1

0 0 0

1 1 1- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Roberts
1

2

1 0

0 1-

È

Î
Í

˘

˚
˙

1

2

0 1

1 0-

È

Î
Í

˘

˚
˙

Note: The Prewitt coefficients require extra bits of precision because they are not powers
of two. The block uses 16 bits to represent the Prewitt coefficients. For 8-bit input, the
default size of the full-precision gradients is 27 bits. When using the Prewitt method, a
good practice is to reduce the word length used for the gradient calculation. Select the
Output the gradient components check box, and then on the Data Types tab, specify
a smaller word length using Gradient Data Type.

The block convolves the neighborhood of the input pixel with the derivative matrices,
D1 and D2. It then compares the sum of the squares of the gradients to the square of
the threshold. Computing the square of the threshold avoids constructing a square root
circuit. The block casts the gradients to the type you specified on the Data Types tab.
The type conversion on the square of the threshold matches the type of the sum of the
squares of the gradients.

1 Blocks — Alphabetical List

1-36

The block pads the edge of the image with symmetric pixel values. See “Edge Padding”.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

 Edge Detector

1-37

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.EdgeDetector | Edge Detection | Frame To Pixels

Related Examples
• “Edge Detection and Image Overlay”

Introduced in R2015a

1 Blocks — Alphabetical List

1-38

Erosion

Morphological erosion of binary pixel data

Library

visionhdlmorph

Description

The Erosion block replaces each pixel with the local minimum of the neighborhood
around the pixel. The block operates on a stream of binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

 Erosion

1-39

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods of up to 32×32 pixels. To use a structuring
element, specify Neighborhood as getnhood(strel(shape)).

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest

1 Blocks — Alphabetical List

1-40

power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The block pads the edge of the image with ones for the erosion operation. See “Edge
Padding”.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

The latency of the kernel depends on the neighborhood size.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

 Erosion

1-41

See Also
visionhdl.Erosion | Dilation | Erosion | Frame To Pixels

More About
• “Morphological Dilation and Erosion”
• “Structuring Elements”

Introduced in R2015a

1 Blocks — Alphabetical List

1-42

FIL Frame To Pixels
Convert full-frame video to pixel stream for FPGA-in-the-loop

Library
visionhdlio

Description

The FIL Frame To Pixels block performs the same frame-to-pixel conversion as the
Frame To Pixels block. In addition, you can configure the width of the output vector
to be a single pixel, a line, or an entire frame. The block returns control signals in vectors
of the same width as the pixel data. This optimization makes more efficient use of the
communication link between the FPGA board and your Simulink simulation when using
FPGA-in-the-loop (FIL). To run FPGA-in-the-loop, you must have an HDL Verifier™
license.

When you generate a programming file for a FIL target in Simulink, the tool creates
a model to compare the FIL simulation with your Simulink design. For Vision HDL
Toolbox designs, the FIL block in that model replicates the pixel-streaming interface to
send one pixel at a time to the FPGA. You can modify the autogenerated model to use the
FIL Frame To Pixels and FIL Pixels To Frame blocks to improve communication

 FIL Frame To Pixels

1-43

bandwidth with the FPGA board by sending one frame at a time. For how to modify the
autogenerated model, see “FPGA-in-the-Loop”.

Specify the same video format and vector size for the FIL Frames To Pixels block and
the FIL Pixels To Frame block.

Signal Attributes

Port Direction Description Data Type

matrix Input Full image, specified as an Active
pixels per line-by-Active video
lines-by-N matrix. The height and
width are the dimensions of the active
image specified in Video format. N is
the Number of components used to
express a single pixel.

• uint or int
• fixdt()

• boolean

• double or single

data1,...,dataNOutput Image pixels, returned as a vector of
M values, where M is the width of the
Output vector format. There are N
data ports, where N is the Number of
components.

Specified by Data type

hStartOut Output Control signal indicating whether each
pixel is the first pixel in a horizontal
line of a frame, returned as a vector of
M values.

boolean

hEndOut Output Control signal indicating whether each
pixel is the last pixel in a horizontal
line of a frame, returned as a vector of
M values.

boolean

vStartOut Output Control signal indicating whether each
pixel is the first pixel in the first (top)
line of a frame, returned as a vector of
M values.

boolean

vEndOut Output Control signal indicating whether
each pixel is the last pixel in the last
(bottom) line of a frame, returned as a
vector of M values.

boolean

1 Blocks — Alphabetical List

1-44

Port Direction Description Data Type

validOut Output Control signal indicating the validity
of the output pixel, returned as a
vector of M values.

boolean

 FIL Frame To Pixels

1-45

Dialog Box and Parameters

Number of components

1 Blocks — Alphabetical List

1-46

Component values of each pixel. The pixel can be represented by 1, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Data type
Output pixel data type. The default is uint8.

Output vector format
Size of the vector used to communicate with the FPGA subsystem. The block outputs
pixels and control signals in vectors of the same length. The block calculates the
length of the vectors based on the Video format parameter.

• Pixel — Output scalar values for pixel and control signals.
• Line — Output vectors contain Total pixels per line values.
• Frame — Output vectors contain Total pixels per line × Total video lines

values.

A larger value results in faster communication between the FPGA board and
Simulink. Choose the largest option that is supported by the I/O and memory
resources on your board.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers.

Note: The sample time of your video source must match the total number of pixels
in the frame size you select in the Frame To Pixels block. Set the sample time to
Total pixels per line × Total lines.

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16

 FIL Frame To Pixels

1-47

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110
768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48
1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64
2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

Note: When using a custom format, the values you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

For the horizontal direction, Total pixels per line must be greater than or equal to
Front porch + Active pixels per line. The block calculates Back porch = Total
pixels per line − Front porch − Active pixels per line.

For the vertical direction, Total video lines must be greater than or equal to
Starting active line + Active video lines − 1. The block calculates Ending active
line = Starting active line + Active video lines − 1.

If you specify a format that does not conform to these rules, the block reports an
error.

Note: When using a custom format, Active pixels per line must be greater than 1.
Also, set the horizontal blanking interval, or Back porch + Front porch, according
to these guidelines.

1 Blocks — Alphabetical List

1-48

• The total of Back porch + Front porch must be at least 2 times the largest
kernel size of the algorithm in the blocks following the Frame To Pixel
block. If the kernel size is < 4, the total porch must be at least 8 pixels.

• The Back porch must be at least 6 pixels. This parameter is the number of
inactive pixels before the first valid pixel in a frame.

See Also
FIL Pixels To Frame | Frame To Pixels

More About
• “Streaming Pixel Interface”
• “FPGA Verification”

Introduced in R2015a

 FIL Pixels To Frame

1-49

FIL Pixels To Frame
Convert pixel stream from FPGA-in-the-loop to full-frame video

Library

visionhdlio

Description

The FIL Pixels To Frame block performs the same pixel-to-frame conversion as
the Pixels To Frame block. In addition, you can configure the width of the input to
be a single pixel, a line, or an entire frame per step. The block expects control signal
input vectors of the same width as the pixel data. This optimization can speed up the
communication link between the FPGA board and your Simulink simulation when using
FPGA-in-the-loop. To run FPGA-in-the-loop, you must have an HDL Verifier license.

When you generate a programming file for a FIL target in Simulink, the tool creates
a model to compare the FIL simulation with your Simulink design. For Vision HDL
Toolbox designs, the FIL block in that model replicates the pixel-streaming interface to
send one pixel at a time to the FPGA. You can modify the autogenerated model to use the

1 Blocks — Alphabetical List

1-50

FIL Frame To Pixels and FIL Pixels To Frame blocks to improve communication
bandwidth with the FPGA board by sending one frame at a time. For how to modify the
autogenerated model, see “FPGA-in-the-Loop”.

Specify the same video format for the FIL Frames To Pixels block and the FIL
Pixels To Frame block.

Signal Attributes

Port Direction Description Data Type

data1,...,dataNInput Image pixels, specified as a vector of
M values, where M is the width of the
Output vector format. There are N
data ports, where N is the Number
of components.

• uint or int
• fixdt()

• boolean

• double or single
hStartIn Input Control signal indicating whether

each pixel is the first pixel in a
horizontal line of an input frame,
returned as a vector of M values.

boolean

hEndIn Input Control signal indicating whether
each pixel is the last pixel in a
horizontal line of a frame, returned
as a vector of M values.

boolean

vStartIn Input Control signal indicating whether
each pixel is the first pixel in the first
(top) line of a frame, returned as a
vector of M values.

boolean

vEndIn Input Control signal indicating whether
each pixel is the last pixel in the last
(bottom) line of a frame, returned as
a vector of M values.

boolean

validIn Input Control signal indicating the validity
of the input pixel, returned as a
vector of M values.

boolean

matrix Output Full image, returned as an Active
pixels per line-by-Active video
lines-by-N matrix. The height and

Same as data1,...,dataN

 FIL Pixels To Frame

1-51

Port Direction Description Data Type

width are the dimensions of the
active image specified in Video
format. N is the Number of
components used to express a single
pixel.

validOut Output True when the output frame is
successfully recompiled from the
input stream.

boolean

Dialog Box and Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

1 Blocks — Alphabetical List

1-52

Input vector format
Size of the vector used to communicate with the FPGA subsystem. The block accepts
input pixels and control signals in vectors of the same length. The block calculates
the length of the vectors based on the Video format parameter.

• Pixel — Accept scalar values for pixel and control signals.
• Line — Accept input vectors containing Total pixels per line values.
• Frame — Accept input vectors containing Total pixels per line × Total video

lines values.

A larger value results in faster communication between the FPGA board and
Simulink. Choose the largest option that is supported by the I/O and memory
resources on your board.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers.

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

 FIL Pixels To Frame

1-53

See Also
FIL Frame To Pixels | Pixels To Frame

More About
• “Streaming Pixel Interface”
• “FPGA Verification”

Introduced in R2015a

1 Blocks — Alphabetical List

1-54

Frame To Pixels
Convert full-frame video to pixel stream

Library

visionhdlio

Description

The Frame To Pixels block converts color or grayscale full-frame video to a pixel
stream and control signals. The control signals indicate the validity of each pixel and
its location in the frame. The pixel stream format can include padding pixels around
the active frame. You can configure the frame and padding dimensions by selecting a
common video format or specifying custom dimensions. See “Streaming Pixel Interface”
for details of the pixel stream format.

Use this block to generate input for a subsystem targeted for HDL code generation. This
block does not support HDL code generation.

If your model converts frames to a pixel stream and later converts the stream back to
frames, specify the same video format for the Frame To Pixels block and the Pixels
To Frame block.

Signal Attributes

Port Direction Description Data Type

frame Input Full image specified as a Active
pixels per line-by-Active video
lines-by-N matrix. Height and width

• uint or int
• fixdt()

 Frame To Pixels

1-55

Port Direction Description Data Type

are the dimensions of the active
image specified in Video format. N
is the Number of components used
to express a single pixel.

• boolean

• double or single

pixel Output Single image pixel returned as
a vector of 1-by-Number of
components values.

Specified by Data type

ctrl Output Control signals describing the
validity of the pixel and the location
of the pixel within the frame,
specified as a bus containing five
signals. See “Pixel Control Bus”.

pixelcontrol

1 Blocks — Alphabetical List

1-56

Dialog Box and Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}

 Frame To Pixels

1-57

or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Data type
Output pixel data type. The default is uint8.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers.

Note: The sample time of your video source must match the total number of pixels
in the frame size you select in the Frame To Pixels block. Set the sample time to
Total pixels per line × Total lines.

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16
576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110
768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48
1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64
2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

1 Blocks — Alphabetical List

1-58

Note: When using a custom format, the values you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

For the horizontal direction, Total pixels per line must be greater than or equal to
Front porch + Active pixels per line. The block calculates Back porch = Total
pixels per line − Front porch − Active pixels per line.

For the vertical direction, Total video lines must be greater than or equal to
Starting active line + Active video lines − 1. The block calculates Ending active
line = Starting active line + Active video lines − 1.

If you specify a format that does not conform to these rules, the block reports an
error.

Note: When using a custom format, Active pixels per line must be greater than 1.
Also, set the horizontal blanking interval, or Back porch + Front porch, according
to these guidelines.

• The total of Back porch + Front porch must be at least 2 times the largest
kernel size of the algorithm in the blocks following the Frame To Pixel
block. If the kernel size is < 4, the total porch must be at least 8 pixels.

• The Back porch must be at least 6 pixels. This parameter is the number of
inactive pixels before the first valid pixel in a frame.

See Also
visionhdl.FrameToPixels | Pixels To Frame

More About
• “Streaming Pixel Interface”

Introduced in R2015a

 Gamma Corrector

1-59

Gamma Corrector
Apply or remove gamma correction

Library

visionhdlconversions

Description

Gamma Corrector applies or removes gamma correction on a stream of pixels. Gamma
correction adjusts linear pixel values so that the modified values fit a curve. The de-
gamma operation performs the opposite operation to obtain linear pixel values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a scalar
value. The data type of the output is
the same as the data type of the input.

• uint8 or uint16
• int8 or int16

1 Blocks — Alphabetical List

1-60

Port Direction Description Data Type

• fixdt(0,N,M), N + M ≤
16

double and single data
types are supported for
simulation but not for HDL
code generation.

ctrl Input/
Output

Control signals describing the validity
of the pixel and the location of the
pixel within the frame, specified as a
bus containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Operation
Direction of pixel value adjustment.

 Gamma Corrector

1-61

• Gamma (default) — Apply gamma correction.
• De-gamma — Remove gamma correction.

Gamma
Target gamma value, specified as a scalar greater than or equal to 1.

• When you set Operation to Gamma, specify Gamma as the target gamma value of
the output video stream.

• When you set Operation to De-gamma, specify Gamma as the gamma value of
the input video stream.

The default value is 2.2.
Linear segment

Option to include a linear segment in the gamma curve. When you select this check
box, the gamma curve has a linear portion near the origin. By default, this check box
is selected.

Break point
Pixel value that corresponds to the point where the gamma curve and linear segment
meet. Specify Break point as a scalar value between 0 and 1, exclusive. This
parameter applies only when you select the Linear segment check box.

The default value is 0.018.

Algorithm

For the equations used for gamma correction, see Gamma Correction in the Computer
Vision System Toolbox documentation.

To save hardware resources, the block implements the gamma correction equation as a
lookup table. The lookup table maps each input pixel value to a corrected output value.

Latency

The latency of the Gamma Corrector block is 2 cycles.

See Also
visionhdl.GammaCorrector | Frame To Pixels | Gamma Correction

1 Blocks — Alphabetical List

1-62

Related Examples
• “Gamma Correction”

Introduced in R2015a

 Grayscale Closing

1-63

Grayscale Closing

Morphological closing of grayscale pixel data

Library

visionhdlmorph

Description

The Grayscale Closing block performs morphological dilation, followed by
morphological erosion, using the same neighborhood for both calculations. The block
operates on a stream of pixel intensity values. You can specify a neighborhood, or
structuring element, of up to 32×32 pixels. The block implements the minimum and
maximum operations in two stages. The block finds the minimum or maximum of each
row of the neighborhood by implementing pipelined comparison trees. An additional
comparison tree finds the minimum or maximum value of the row results. If the
structuring element contains zeros that mask off pixels, the algorithm saves hardware
resources by not implementing comparators for those pixel locations.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

1 Blocks — Alphabetical List

1-64

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar value.

• uint8, uint16,uint32
• fixdt(0,N,M)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

 Grayscale Closing

1-65

The block supports flat neighborhoods of up to 32×32 pixels. To use a structuring
element, specify the Neighborhood as getnhood(strel(shape)).

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The closing algorithm is morphological dilation followed by morphological erosion. See
the Grayscale Dilation and Grayscale Erosion reference pages for the respective
kernel architectures.

The block pads the image with zeroes for the dilation operation, and with ones for the
erosion operation. See “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Morphological closing is a compound operation. Therefore, this block contains
a second line buffer between the dilation kernel and the erosion kernel. You can monitor
the number of timesteps between the input control signals and the output control signals
to determine the exact latency for any configuration of the block.

1 Blocks — Alphabetical List

1-66

The latency of the line memory includes edge padding. The latency of each comparison
kernel for a neighborhood of m×n pixels is log2(m)+log2(n).

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.GrayscaleClosing | Closing | Frame To Pixels | Grayscale Dilation |
Grayscale Erosion

More About
• “Morphological Dilation and Erosion”
• “Structuring Elements”

Introduced in R2016a

 Grayscale Dilation

1-67

Grayscale Dilation

Morphological dilation of grayscale pixel data

Library

visionhdlmorph

Description

The Grayscale Dilation block performs morphological dilation on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32
pixels. The block finds the maximum of each row of the neighborhood by implementing
pipelined comparison trees. An additional comparison tree finds the maximum value
of the row results. If the structuring element contains zeros that mask off pixels, the
algorithm saves hardware resources by not implementing comparators for those pixel
locations.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

1 Blocks — Alphabetical List

1-68

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar value.

• uint8, uint16,uint32
• fixdt(0,N,M)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

 Grayscale Dilation

1-69

The block supports flat neighborhoods of up to 32×32 pixels. To use a structuring
element, specify the Neighborhood as getnhood(strel(shape)).

The default is ones(5,5).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm
The diagram shows the architecture of the dilation operation. The algorithm finds the
maximum of each row of the neighborhood in parallel. Then it calculates the maximum of
the rows using another comparison tree.

For a rectangular neighborhood that is m pixels wide, the first-stage comparison trees
contain m – 1 comparators over log2(m) clock cycles. For instance, for a rectangular
neighborhood that is 7 pixels wide, the comparison tree has 6 comparators over 3 clock
cycles.

1 Blocks — Alphabetical List

1-70

However, if the neighborhood you specify contains zeroes, the generated HDL excludes
the comparator for the zero locations. The pipeline delay through the comparison tree
does not change. For instance, for a nonrectangular neighborhood with a row of [0 0 1
1 0 0 1], the comparison tree for that row contains 2 comparators and still uses 3 clock
cycles.

The block pads the image with zeroes for the dilation operation. See “Edge Padding”.

Latency

The latency of the operation is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. The latency of the kernel for a
neighborhood of m×n pixels is log2(m)+log2(n).

 Grayscale Dilation

1-71

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.GrayscaleDilation | Dilation | Frame To Pixels | Grayscale Erosion

More About
• “Morphological Dilation and Erosion”
• “Structuring Elements”

Introduced in R2016a

1 Blocks — Alphabetical List

1-72

Grayscale Erosion

Morphological erosion of grayscale pixel data

Library

visionhdlmorph

Description

The Grayscale Erosion block performs morphological erosion on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32
pixels. The block finds the minimum of each row of the neighborhood by implementing
pipelined comparison trees. An additional comparison tree finds the minimum value
of the row results. If the structuring element contains zeros that mask off pixels, the
algorithm saves hardware resources by not implementing comparators for those pixel
locations.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

 Grayscale Erosion

1-73

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar value.

• uint8, uint16,uint32
• fixdt(0,N,M)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood

1 Blocks — Alphabetical List

1-74

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports flat neighborhoods of up to 32×32 pixels. To use a structuring
element, specify the Neighborhood as getnhood(strel(shape)).

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The diagram shows the architecture of the erosion operation. The algorithm finds the
minimum of each row of the neighborhood in parallel. Then it calculates the minimum of
the rows using another comparison tree.

 Grayscale Erosion

1-75

For a rectangular neighborhood that is m pixels wide, the first-stage comparison trees
contain m – 1 comparators over log2(m) clock cycles. For instance, for a rectangular
neighborhood that is 7 pixels wide, the comparison tree has 6 comparators over 3 clock
cycles.

However, if the neighborhood you specify contains zeroes, the generated HDL excludes
the comparator for the zero locations. The pipeline delay through the comparison tree
does not change. For instance, for a nonrectangular neighborhood with a row of [0 0 1
1 0 0 1], the comparison tree for that row contains 2 comparators and still uses 3 clock
cycles.

The line memory pads the image with zeroes for the erosion operation. See “Edge
Padding”.

1 Blocks — Alphabetical List

1-76

Latency

The latency of the operation is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. The latency of the kernel for a
neighborhood of m×n pixels is log2(m)+log2(n).

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.GrayscaleErosion | Erosion | Frame To Pixels | Grayscale Dilation

More About
• “Morphological Dilation and Erosion”
• “Structuring Elements”

Introduced in R2016a

 Grayscale Opening

1-77

Grayscale Opening

Morphological opening of grayscale pixel data

Library

visionhdlmorph

Description

The Grayscale Opening block performs morphological erosion, followed by
morphological dilation, using the same neighborhood for both calculations. The block
operates on a stream of pixel intensity values. You can specify a neighborhood, or
structuring element, of up to 32×32 pixels. The block implements the minimum and
maximum operations in two stages. The block finds the minimum or maximum of each
row of the neighborhood by implementing pipelined comparison trees. An additional
comparison tree finds the minimum or maximum value of the row results. If the
structuring element contains zeros that mask off pixels, the algorithm saves hardware
resources by not implementing comparators for those pixel locations.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

1 Blocks — Alphabetical List

1-78

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar value.

• uint8, uint16,uint32
• fixdt(0,N,M)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

 Grayscale Opening

1-79

The block supports flat neighborhoods of up to 32×32 pixels. To use a structuring
element, specify the Neighborhood as getnhood(strel(shape)).

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The opening algorithm is morphological erosion followed by morphological dilation. See
the Grayscale Erosion and Grayscale Dilation reference pages for the respective
kernel architectures.

The line memory pads the image with zeroes for the dilation operation, and with ones for
the erosion operation. See “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Morphological opening is a compound operation. Therefore, this block
contains a second line buffer between the erosion kernel and the dilation kernel. You
can monitor the number of timesteps between the input control signals and the output
control signals to determine the exact latency for any configuration of the block.

1 Blocks — Alphabetical List

1-80

The latency of the line memory includes edge padding. The latency of each comparison
kernel for a neighborhood of m×n pixels is log2(m)+log2(n).

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.GrayscaleOpening | Frame To Pixels | Grayscale Dilation |
Grayscale Erosion | Opening

More About
• “Morphological Dilation and Erosion”
• “Structuring Elements”

Introduced in R2016a

 Histogram

1-81

Histogram

Frequency distribution

Library

visionhdlstatistics

Description

The Histogram block computes the frequency distribution of pixel values in a video
stream. You can configure the number and size of the bins. The block provides a read
interface for accessing each bin. The block keeps a running histogram until you reset the
bin values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts a scalar pixel
value and a bus containing five control signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame. To convert a pixel matrix into a pixel
stream and these control signals, use the Frame To Pixels block. For a full description
of the interface, see “Streaming Pixel Interface”.

1 Blocks — Alphabetical List

1-82

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as an
unsigned integer scalar.

• uint

• fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

binAddr Input Bin number for reading histogram
values. The block captures this
value each cycle that readRdy is
true.

fixdt(0,N,0), N = 5,6,...,10.
Word length must be
log2(Number of bins).

binReset Input Triggers RAM initialization
sequence when true.

boolean

readRdy Output Indicates true when histogram is
ready for read.

boolean

hist Output Histogram value corresponding to
a binAddr request, returned as a
scalar.

fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

validOut Output Indicates true when dataOut is
available.

boolean

 Histogram

1-83

Dialog Box and Parameters

Number of bins
Number of bins for the histogram.

Choose the number of bins depending on the input word length (WL). If the number
of bins is less than 2WL, the block truncates the least-significant bits of each pixel. If
the number of bins is greater than 2WL, the block warns about an inefficient use of
hardware resources. The default is 256.

Data type
Data type of the histogram bin values.

• double

• single

• Unsigned fixed point (default)

double and single data types are supported for simulation but not for HDL code
generation.

Word length

1 Blocks — Alphabetical List

1-84

Word length of the histogram bins when Data type is Unsigned fixed point. If a
bin overflows, the count saturates and the block shows a warning. The default is 16.

Algorithm

RAM Reset and Ready Sequence

At startup, you must wait Number of bins cycles for the block to reset the RAM, before
sending input data. This initial reset happens without asserting binReset.

You cannot read histogram bins and apply pixel data at the same time. When you want
to read the bin values, wait for readRdy and then apply each bin address of interest.
The block provides the corresponding histogram values on the dataOut port, with
accompanying validOut signal.

The histogram values persist and accumulate across frames until you assert binReset.
When you assert binReset, the block takes Number of bins cycles to clear the RAM
and be ready for new input. Other input signals are ignored during reset.

The diagram shows an overview of the reset sequence. vStart and vEnd are control
signals in the pixelcontrol input bus.

The diagram shows the automatic startup reset, followed by a frame of video input. The
read window starts when readReady is asserted. The binReset signal initiates a bin
reset. The next input frame is not applied until after the reset is complete.

 Histogram

1-85

The diagram illustrates a bin read sequence. vEnd is a control signal in the
pixelcontrol input bus. valid is a control signal in the pixelcontrol output bus.

After the last pixel of a video frame, indicated by vEnd = true, the block asserts
readRdy to show that the histogram is ready for reading. Two cycles after applying a bin
address, the block provides the value of that bin on dataOut, with a corresponding valid
signal. You can request the last bin address and assert binReset at the same time.

Latency

The block sets readRdy to true 2 cycles after receiving the last pixel of a frame. The
input pixelcontrol bus indicates the last pixel of a frame by vEnd = true. While
readRdy is true, the block captures binAddr requests on each cycle. The block provides
the corresponding histogram bin values on dataOut two cycles later.

See Also
visionhdl.Histogram | 2-D Histogram | Frame To Pixels | imhist

Related Examples
• “Histogram Equalization”

1 Blocks — Alphabetical List

1-86

Introduced in R2015a

 Image Filter

1-87

Image Filter
2-D FIR filtering

Library

visionhdlfilter

Description

The Image Filter block performs two-dimensional FIR filtering on a pixel stream.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input Single pixel, specified as a scalar
value.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

1 Blocks — Alphabetical List

1-88

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single pixel, returned as a scalar
value. You can specify the output
data type in the block dialog box.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

 Image Filter

1-89

Dialog Box and Parameters

Main

Filter coefficients
Coefficients of the filter, specified as a vector or matrix of any numeric type.

The maximum size along any dimension of a matrix or vector is 16.
Padding method

Method for padding the boundary of the input image. See “Edge Padding”.

• Constant (default) — Interpret pixels outside the image frame as having a
constant value.

• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric — Pad the input matrix with its mirror image.

Padding value

1 Blocks — Alphabetical List

1-90

Constant value used to pad the boundary of the input image.

This parameter is visible when you set Padding method to Constant. The block
casts this value to the same data type as the input pixel. The default value is 0.

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (coefficient rows – 1)-by-Line buffer size memory
locations to store the pixels. The default value is 2048.

Data Types

Rounding mode
Rounding mode for internal fixed-point calculations. The default is Floor.

Overflow mode
Overflow mode for internal fixed-point calculations. The default is Wrap.

 Image Filter

1-91

Coefficients Data Type
Method for determining the data type of the filter coefficients.

The default is Inherit: Same as first input.

When converting the coefficients to this data type, the block always uses Saturate
overflow mode and Nearest rounding mode.

Output Data Type
Method for determining the data type of the output pixels.

The default is Inherit: Same as first input.

Algorithm

The block implements the filter with a fully-pipelined architecture. Each multiplier has
two pipeline stages on each input and two pipeline stages on each output. The adder is a
pipelined tree structure. HDL code generation takes advantage of symmetric, unity, or
zero-value coefficients to reduce the number of multipliers.

You can optimize the multipliers for HDL code generation using canonical signed digit
(CSD) or factored CSD. Right-click the block, select HDL Code > HDL Properties, and
set the ConstMultiplierOptimization parameter to csd or fcsd.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

1 Blocks — Alphabetical List

1-92

The latency of the kernel varies depending on the coefficients you choose.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.ImageFilter | 2-D FIR Filter | Frame To Pixels

Introduced in R2015a

 Lookup Table

1-93

Lookup Table
Map input pixel to output pixel using custom rule

Library

visionhdlconversions

Description

The Lookup Table block provides a custom one-to-one map between input pixel values
and output pixel values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as a scalar
value.

• boolean

• uint8 or uint16
• fixdt(0,N,M), N +

M ≤ 16

1 Blocks — Alphabetical List

1-94

Port Direction Description Data Type

ctrl Input/Output Control signals describing the validity
of the pixel and the location of the
pixel within the frame, specified as a
bus containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single image pixel, returned as a scalar
value.

Specified by Table data.

double and single data
types are supported for
simulation but not for
HDL code generation.

Dialog Box and Parameters

Table data
Determines the one-to-one correspondence between an input pixel value and an
output pixel value.

• The table data is a row or column vector of any data type. The data type of the
table data determines that of the output pixel.

• The length of the vector must be 2WordLength, where WordLength is the size, in bits,
of the input pixel.

 Lookup Table

1-95

• The smallest representable value of the input data type maps to the first element
of the table, the second smallest value maps to the second element, and so on. For
example, if the input pixel has a data type of fixdt(0,3,1), the input value 0
maps to the first element of the table, 0.5 maps to the second element, 1 maps to
the third, and so on.

The default value is uint8(0:1:255).

Algorithm

Latency

The latency of the Lookup Table block is 2 cycles.

See Also
visionhdl.LookupTable | Frame To Pixels

Introduced in R2015a

1 Blocks — Alphabetical List

1-96

Median Filter
2-D median filtering

Library
visionhdlfilter

Description
Median Filter replaces each pixel with the median value of the surrounding N-by-N
neighborhood. The median is less sensitive to extreme values than the mean. Use this
block to remove salt-and-pepper noise from an image without significantly reducing the
sharpness of the image. You can specify the neighborhood size and the padding values for
the edges of the input image.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/Output Single image pixel, specified as
a scalar integer value. The data

• uint or int
• fixdt(~,N,0)

• boolean

 Median Filter

1-97

Port Direction Description Data Type

type of the output is the same as
the data type of the input.

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/Output Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See
“Pixel Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood size
Size in pixels of the image region used to compute the median.

• 3×3 (default)
• 5×5

• 7×7

Padding method

1 Blocks — Alphabetical List

1-98

Method for padding the boundary of the input image. See “Edge Padding”.

• Constant — Pad input matrix with a constant value.
• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric (default) — Pad image edge with its mirror image.

Padding value
Constant value used to pad the boundary of the input image.

This parameter is visible when you set Padding method to Constant. The block
casts this value to the same data type as the input pixel. The default value is 0.

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The block allocates N - 1-by-Line buffer size memory locations to
store the pixels used to compute the median value. N is the dimension of the square
region specified in Neighborhood size. The default value is 2048.

Algorithm

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

 Median Filter

1-99

The latency of the filter kernel depends on the neighborhood size as shown in the table.

Neighborhood size # of Comparisons to Find Median

3×3 11
5×5 75
7×7 230

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also
visionhdl.MedianFilter | Frame To Pixels | Median Filter

Introduced in R2015a

1 Blocks — Alphabetical List

1-100

Opening

Morphological opening of binary pixel data

Library

visionhdlmorph

Description

The Opening block performs morphological erosion, followed by morphological dilation,
using the same neighborhood for both calculations. The block operates on a stream of
binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

 Opening

1-101

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Dialog Box and Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods of up to 32×32 pixels. To use a structuring
element, specify Neighborhood as getnhood(strel(shape)).

The default is [0,1,0;1,1,1;0,1,0].
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest

1 Blocks — Alphabetical List

1-102

power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The block pads the image with zeroes for the dilation operation, and with ones for the
erosion operation. See “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Morphological opening is a compound operation. Therefore, this block
contains a second line buffer between the erosion kernel and the dilation kernel. To
determine the exact latency for any configuration of the block, monitor the number of
time steps between the input control signals and the output control signals.

The latency of the line memory includes edge padding. The latency of the kernel depends
on the neighborhood size.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

 Opening

1-103

See Also
visionhdl.Opening | Closing | Dilation | Erosion | Frame To Pixels | Opening

More About
• “Morphological Dilation and Erosion”
• “Structuring Elements”

Introduced in R2015a

1 Blocks — Alphabetical List

1-104

Pixels To Frame

Convert pixel stream to full-frame video

Library

visionhdlio

Description

The Pixels To Frame block converts a color or grayscale pixel stream and control
signals to full-frame video. The control signal bus indicates the validity of each pixel and
its location within the frame. The pixel stream format can include padding pixels around
the active frame. You can configure the frame and padding dimensions by selecting a
common video format or specifying custom dimensions. See “Streaming Pixel Interface”
for details of the pixel stream format.

Use this block to convert the output of a subsystem targeted for HDL code generation
back to frames. This block does not support HDL code generation.

If your model converts frames to a pixel stream and later converts the stream back to
frames, specify the same video format for the Frame To Pixels block and the Pixels
To Frame block.

Signal Attributes

The Pixels To Frame block has the following input and output ports.

 Pixels To Frame

1-105

Port Direction Description Data Type

pixel Input Single image pixel specified by
a vector of 1-by-Number of
components values.

• uint or int
• fixdt()

• boolean

• double or single
ctrl Input Control signals describing the

validity of the pixel and the location
of the pixel within the frame,
specified as a bus containing five
signals. See “Pixel Control Bus”.

pixelcontrol

frame Output Full image returned as a Active
pixels per line-by-Active video
lines-by-N matrix. Height and width
are the dimensions of the active
image specified in Video format. N
is the Number of components used
to express a single pixel.

Same as pixel

validOut Output True when the output frame is
successfully recompiled from the
input stream.

boolean

1 Blocks — Alphabetical List

1-106

Dialog Box and Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format pull-down menu. For a custom format, select Custom,
then specify the dimensions as integers.

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480

 Pixels To Frame

1-107

Video Format Active Pixels

Per Line

Active Video Lines

576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

See Also
visionhdl.PixelsToFrame | Frame To Pixels

More About
• “Streaming Pixel Interface”

Introduced in R2015a

1 Blocks — Alphabetical List

1-108

ROI Selector

Select a region of interest (ROI) from pixel stream

Library

visionhdlutilities

Description

The ROI Selector block selects a portion of the active frame from a video stream. The
total size of the frame remains the same. The control signals indicate a new active region
of the frame. The diagram shows the inactive pixel regions in blue and the requested
output region outlined in orange.

 ROI Selector

1-109

You can specify a fixed size and location for the new frame, or select the frame location in
real time via an input port. You can select more than one region. Define each region by
the upper-left corner coordinates and the dimensions. The block returns one set of pixels
and control signals for each region you specify. The block sets the inactive pixels in the
output frame to zero.

Regions are independent from each other, so they can overlap. If you specify a region
that includes the edge of the active frame, the block returns only the active portion of the
region. The diagram shows the output frames for three requested regions. The second
output region (treetops) does not include the inactive region above the frame.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns

1 Blocks — Alphabetical List

1-110

a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

The diagram shows the additional ports on the block when you select three regions. The
regionN input ports are optional.

Port Direction Description Data Type

pixel Input Single image pixel,
specified as a scalar
value.

Any numeric data
type

double and single
data types are
supported for
simulation but
not for HDL code
generation.

ctrl Input Control signals
describing the
validity of the pixel
and the location of
the pixel within the
frame, specified as a
bus containing five
signals. See “Pixel
Control Bus”.

pixelcontrol

 ROI Selector

1-111

Port Direction Description Data Type

region1,...,regionNInput Region of interest,
specified as vectors
of positive integers
that define the
coordinates of the
top-left corner, and
the dimensions, of
each desired output
frame, [hPos vPos
hSize vSize]. The
block has N region
ports, where N is
the Number of
regions.

1-by-4 vector of
positive integers

pixel1,...,pixelNOutput Output image pixels,
specified as scalar
values. The block
has N output pixel
ports, where N is
the Number of
regions, or the
size of the Regions
matrix.

Same data type as
the input pixel port

ctrl1,...,ctrlN Output Control signals,
specifies as busses
of five signals each.
The block has N
output control
ports, where N is
the Number of
regions, or the
size of the Regions
matrix.

pixelcontrol

1 Blocks — Alphabetical List

1-112

Dialog Box and Parameters

Regions source
Location of the output region definitions

Select Property to specify the region(s) in the Regions mask parameter. Select
Input port to specify the region(s) on input ports. There is one input port for each
region. The block samples the region input ports when vStart is set in the input
control bus.

Regions
Rectangular regions of interest to select from the input frame, specified as a N-by-4
matrix.

N is the number of regions. You can select up to 16 regions. The four elements that
define each region are the top-left starting coordinates and the dimensions, [hPos
vPos hSize vSize]. The coordinates count from the upper left corner of the active
frame, defined as [1,1]. hSize must be greater than 1. The regions are independent
of each other, so they can overlap. This parameter applies when you set Regions
source to Property.

Number of regions
Number of region input ports, specified as an integer from 1 to 16.

 ROI Selector

1-113

This parameter applies when you set Regions source to Input port.

Algorithm

The generated HDL code for the ROI Selector block uses two 32-bit counters. It does
not use additional counters for additional regions.

Latency

The block has a latency of three cycles.

See Also
visionhdl.ROISelector | Frame To Pixels

Introduced in R2016a

1 Blocks — Alphabetical List

1-114

Image Statistics

Mean, variance, and standard deviation

Library

visionhdlstatistics

Description

The Image Statistics block calculates the mean, variance, and standard deviation
of streaming video data. Each calculation is performed over all pixels in the input
region of interest (ROI). The block implements the calculations using hardware-efficient
algorithms.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts a scalar pixel
value and a bus containing five control signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame. To convert a pixel matrix into a pixel
stream and these control signals, use the Frame To Pixels block. For a full description
of the interface, see “Streaming Pixel Interface”.

• To change the size and dimensions of the ROI, you can manipulate the input video
stream control signals. See “Regions of Interest” on page 1-121.

• The number of valid pixels in the input image affects the accuracy of the mean
approximation. To avoid approximation error, use an image that contains fewer
than 64 pixels, a multiple of 64 pixels up to 642 pixels, a multiple of 642 pixels up
to 643 pixels, or a multiple of 643 pixels up to 644 pixels. For details of the mean
approximation, see “Algorithm” on page 1-117.

• The block calculates statistics over frames up to 644 (16,777,216) pixels in size. This
size supports HD frames.

 Image Statistics

1-115

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel specified as a
scalar value.

• uint8/uint16

• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

mean Output Mean of the most recent input
frame completed.

Same as pixel

var Output Variance of the most recent input
frame completed.

Same as pixel

stdDev Output Standard deviation of the most
recent input frame completed.

Same as pixel

validOut Output Computations completed. The
block sets this output to true
when the statistic outputs for a
frame are ready.

boolean

1 Blocks — Alphabetical List

1-116

Note: The block uses full-precision arithmetic for internal calculation. At the output,
intermediate data is cast back to the input type using the following fixed-point settings:
RoundingMethod = Nearest, and OverflowAction = Saturate. The table shows the
output word length for each calculation, relative to the input word length (IWL).

Mean Variance Std. Deviation

IWL 2×IWL 2×IWL

Dialog Box and Parameters

Enable mean output
Select this check box to calculate the mean of each input frame. If you clear this
check box, the mean output does not show on the block.

Enable variance output
Select this check box to calculate the variance of each input frame. If you clear this
check box, the var output does not show on the block.

Enable std. deviation

 Image Statistics

1-117

Select this check box to calculate the standard deviation of each input frame. If you
clear this check box, the stdDev output does not show on the block.

Algorithm

Architecture

The calculations of mean, variance, and standard deviation build off each other. For
hardware efficiency, the calculation logic is shared as shown.

Mean

The equation to calculate the precise mean pixel value requires large internal word
lengths and expensive division logic.

m =
*

==

ÂÂ
1

11
M N

xij

j

N

i

M

Instead of using this equation, the block calculates the mean by a series of four
accumulators that compute the mean of a segment of pixels. First, find the sum of a
window of 64 pixels, and normalize.

1 Blocks — Alphabetical List

1-118

m
L n

n

x
1

1

64
1

64

=
=

Â

Then accumulate 64 of the previous windows, and normalize.

m m
L nL

n
2 1

1

64
1

64

=
=
Â

A third accumulator sums 64 of the 64×64 windows, and normalizes the same way.

m m
L nL

n
3 2

1

64
1

64

=
=
Â

The fourth accumulator sums 64 of the 64×64×64 windows and normalizes.

m m
L nL

n
4 3

1

64
1

64

=
=

Â

Each valid pixel is accumulated as it arrives. Its location within a line or frame does not
affect the accumulation logic.

When vEnd is received, the block promotes any remaining data in the four levels of mean
calculation to calculate the final output. If an accumulator counter is not at 64 when
vEnd arrives, that level normalizes by the actual value of the counter. The constants for
this multiplication are in a lookup table (LUT). The four accumulators share a single
LUT and multiplier.

 Image Statistics

1-119

This method of mean calculation is accurate when the number of pixels in the frame
aligns vEnd with the final accumulator rollover. This alignment occurs at level two when
the frame contains a multiple of 64 pixels, and fewer than 642(4096) pixels. It occurs at
level three when the frame contains a multiple of 4096 pixels. It occurs at level four when
the frame contains a multiple of 643 pixels. This method is also accurate when the frame
has fewer than 64 pixels, because only the first accumulator is needed.

However, when the number of pixels in the frame does not fit these conditions, the block
must normalize the final accumulation before the counter reaches 64. This introduces
an error in the normalization calculation at subsequent levels. The figure shows the
normalization error introduced in the mean calculation by image sizes under 4096 pixels.
The spikes occur where an image size is just over a multiple of 64 pixels.

For images larger than 4096 pixels, the same effect occurs at multiples of 4096 pixels,
and at multiples of 643 pixels.

1 Blocks — Alphabetical List

1-120

Variance

The block calculates variance of the input pixels using the following equation.

s m2 2

11

21
= -

==

ÂÂ(
*

)
M N

xij

j

N

i

M

The mean and the mean of the squared input are calculated in parallel. The block
calculates the mean of squares using the same approximation method used to calculate
the mean, as described in the previous section.

 Image Statistics

1-121

Standard Deviation

The block calculates the square root of the variance using a pipelined bit-set-and-check
algorithm. This algorithm computes the square root using addition and shifts rather than
multipliers. For an N-bit input, the result has N bits of accuracy.

This method is hardware efficient for general inputs. If your data has known
characteristics that allow for a more efficient square root implementation, you can
disable the calculation in this block and construct your own logic from HDL-supported
blocks.

Regions of Interest

Statistics are often calculated on small regions of interest (ROI) rather than an entire
video frame. This block performs calculations on all valid pixels between vStart and
vEnd signals in the ctrl bus, and does not track pixel location within the frame. You
can manipulate the streaming control signals to reduce the size of a frame and delineate
the boundaries of a region of interest before passing the video stream to this block.
For an example that selects multiple small ROIs from a larger image, see “Multi-Zone
Metering”.

The Image Statistics block calculates statistics over frames up to 644 (16,777,216)
pixels in size. If you provide an image with more than 644 pixels, the block calculates the
requested statistics on only the first 16,777,216 pixels and then asserts validOut. The
block ignores extra pixels until it receives a vEnd signal.

Latency

The latency from vEnd to validOut depends on the calculations you select.

When the block receives a vEnd signal that is true, it combines the remaining data in
the four levels of mean calculation to calculate the final output. This final step takes 4
cycles per level, resulting in a maximum of 16 cycles of latency between the input vEnd
signal and the validOut signal. Once the mean is available, the variance calculation
takes 4 cycles. The square root logic requires input word length (IWL) cycles of latency.

If a calculation is not selected, and is not needed for other selected calculations, that logic
is excluded from the generated HDL code.

The table shows the calculation logic and latency for various block configurations.

1 Blocks — Alphabetical List

1-122

MeanVarianceStd.
Deviation

Logic Excluded From
HDL

Latency (cycles)

✓ ✓ ✓ [4n]+4+IWL, (where n is the number of
accumulator levels required for the input size)

✓ variance and square
root

[4n]

 ✓ square root [4n]+4
 ✓ [4n]+4+IWL
✓ ✓ square root [4n]+4
✓ ✓ [4n]+4+IWL
 ✓ ✓ [4n]+4+IWL

Note: There must be at least 16 cycles between the vEnd signals on the input. This
timing restriction enables the block to finish processing the current frame before the new
one arrives.

If you are using a custom video format, set the horizontal blanking interval using the
parameters of the Frame To Pixels block. The horizontal blanking interval is equal to
Total pixels per line – Active pixels per line, or, equivalently, Front porch + Back
porch. Standard streaming video formats use a horizontal blanking interval of about
25% of the frame width. This interval is much larger than the latency of the statistics
operations.

See Also
visionhdl.ImageStatistics | 2-D Standard Deviation | 2-D Mean | 2-D Variance |
Frame To Pixels

Related Examples
• “Multi-Zone Metering”

Introduced in R2015a

2

System Objects — Alphabetical List

2 System Objects — Alphabetical List

2-2

visionhdl.ChromaResampler System object

Package: visionhdl

Downsample or upsample chrominance component

Description

visionhdl.ChromaResampler downsamples or upsamples a pixel stream.

• Downsampling reduces bandwidth and storage requirements in a video system by
combining pixel chrominance components over multiple pixels. You can specify a filter
to prevent aliasing, by selecting the default filter or by entering coefficients.

• Upsampling restores a signal to its original rate. You can use interpolation or
replication to calculate the extra sample.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

The object accepts luma and the chrominance components. The object does not modify the
luma component and applies delay to align with the resampled chrominance outputs. The
rate of the output luma component is the same as the input.

Construction

CR = visionhdl.ChromaResampler returns a System object™, CR, that downsamples
from 4:4:4 to 4:2:2 and applies the default antialiasing filter.

CR = visionhdl.ChromaResampler(Name,Value) returns a chroma resampler
System object, CR, with additional options specified by one or more Name,Value pair
arguments. Name is a property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in

 visionhdl.ChromaResampler System object

2-3

any order as Name1,Value1,...,NameN,ValueN. Properties not specified retain their
default values.

Properties

Resampling

Resampling format.

• 4:4:4 to 4:2:2 (default) — Perform a downsampling operation.
• 4:2:2 to 4:4:4 — Perform an upsampling operation.

AntialiasingFilterSource

Lowpass filter to accompany a downsample operation.

• Auto (default) — Built-in lowpass filter.
• Property — Filter using the coefficients in HorizontalFilterCoefficients

property.
• None — No filtering of the input signal.

This property applies when you set Resampling to 4:4:4 to 4:2:2.

HorizontalFilterCoefficients

Coefficients for the antialiasing filter.

Enter the coefficients as a vector. This property applies when you set Resampling to
4:4:4 to 4:2:2 and Antialiasing filter to Property.

Default: [0.2,0.6,0.2]

InterpolationFilter

Interpolation method for an upsample operation.

• Linear (default) — Linear interpolation to calculate the missing values.
• Pixel replication — Repeat the chrominance value of the preceding pixel to

create the missing pixel.

2 System Objects — Alphabetical List

2-4

This property applies when you set Resampling to 4:2:2 to 4:4:4.

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Floor

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Wrap

CustomCoefficientsDataType

Data type for the antialiasing filter coefficients.

Specify a custom data type as a string. This parameter applies when you set
Antialiasing filter to Property or Auto.

Default: fixdt(1,16,0)

Methods

clone Create object with the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics

 visionhdl.ChromaResampler System object

2-5

step Compute next pixel in upsampled or
downsampled pixel stream

Examples

Downsample a Y'CbCr Image

Resample a 4:4:4 Y'CbCr image to 4:2:2. The example also shows how to convert a R'G'B'
input image to Y'CbCr color space.

Prepare a test image by selecting a portion of an image file.

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('fabric.png');

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels,:);

Create a serializer and specify the size of inactive pixel regions. The number of padding
pixels on each line must be greater than the latency of each pixel-processing object.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+40,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a color space converter and resampler, using the default property values. The
default conversion is 'RGB to YCbCr'. The default resampling mode is '4:4:4 to 4:2:2'. The
default anti-aliasing filter is a 29-tap lowpass filter. This gives the object a latency of 30
cycles.

convert2ycbcr = visionhdl.ColorSpaceConverter();

downsampler = visionhdl.ChromaResampler();

Serialize the test image using the serializer object. pixIn is a numPixelsPerFrame -
by-3 matrix. ctrlIn is a vector of control signal structures. Preallocate vectors for the
output signals.

2 System Objects — Alphabetical List

2-6

[pixIn,ctrlIn] = step(frm2pix,frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pix444 = zeros(numPixelsPerFrame,3,'uint8');

ctrl444 = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

pix422 = zeros(numPixelsPerFrame,3,'uint8');

ctrl422 = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the stream, convert to YCbCr, then downsample.

for p = 1:numPixelsPerFrame

 [pix444(p,:),ctrl444(p)] = step(convert2ycbcr,pixIn(p,:),ctrlIn(p));

 [pix422(p,:),ctrl422(p)] = step(downsampler,pix444(p,:),ctrl444(p));

end

Create deserializers with a format matching that of the serializer. Convert the 4:4:4 and
4:2:2 pixel streams back to image frames.

pix2frm444 = visionhdl.PixelsToFrame(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

pix2frm422 = visionhdl.PixelsToFrame(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frm444,frmValid] = step(pix2frm444,pix444,ctrl444);

[frm422,frmValid] = step(pix2frm422,pix422,ctrl422);

There are the same number of pixels in the 4:2:2 and 4:4:4 pixel-streams and frames.
To examine the resampled data, regroup the pixel data for the first 8 pixels of the first
line. The first row is the Y elements of the pixels, the second row is the Cb elements, and
the third row is the Cr elements. Notice that, in the 4:2:2 data, the Cb and Cr elements
change only every second sample.

YCbCr444 = [frm444(1,1:8,1); frm444(1,1:8,2); frm444(1,1:8,3)]

YCbCr422 = [frm422(1,1:8,1); frm422(1,1:8,2); frm422(1,1:8,3)]

figure

 visionhdl.ChromaResampler System object

2-7

imshow(frm422,'InitialMagnification',300)

title '4:2:2'

figure

imshow(frm444,'InitialMagnification',300)

title '4:4:4'

YCbCr444 =

 132 134 129 124 125 122 118 119

 116 118 119 122 122 121 123 123

 135 131 125 121 119 116 118 118

YCbCr422 =

 132 134 129 124 125 122 118 119

 116 116 120 120 122 122 123 123

 135 135 126 126 119 119 118 118

2 System Objects — Alphabetical List

2-8

Algorithm

This object implements the algorithms described on the Chroma Resampler block
reference page.

See Also
Chroma Resampler | visionhdl.FrameToPixels | vision.ChromaResampler

Introduced in R2015a

 clone

2-9

clone
System object: visionhdl.ChromaResampler
Package: visionhdl

Create object with the same property values

Syntax

newCR = clone(CR)

Description

newCR = clone(CR) creates another instance of the ChromaResampler System
object, CR, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

CR

visionhdl.ChromaResampler System object

Output Arguments

newCR

New ChromaResampler System object that has the same property values as the original
System object.

Introduced in R2015a

2 System Objects — Alphabetical List

2-10

isLocked
System object: visionhdl.ChromaResampler
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(CR)

Description

TF = isLocked(CR) returns the locked status, TF, of the ChromaResampler System
object, CR.

Introduced in R2015a

 release

2-11

release
System object: visionhdl.ChromaResampler
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(CR)

Description

release(CR) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

CR

visionhdl.ChromaResampler System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-12

step
System object: visionhdl.ChromaResampler
Package: visionhdl

Compute next pixel in upsampled or downsampled pixel stream

Syntax
[pixelOut,ctrlOut] = step(CR,pixelIn,ctrlIn)

Description
[pixelOut,ctrlOut] = step(CR,pixelIn,ctrlIn) computes the next output pixel,
pixelOut, in the resampled video stream. The pixel data arguments, pixelIn and
pixelOut, are vectors of three values representing a pixel in Y'CbCr color space. The
luma component and control signals, ctrlIn, are passed through and aligned with the
output pixel stream.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments
CR

visionhdl.ChromaResampler System object.

 step

2-13

pixelIn

Single pixel in gamma-corrected Y'CbCr color space, specified as a vector of three values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel in gamma-corrected Y'CbCr color space, returned as a vector of three values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-14

visionhdl.ColorSpaceConverter System object

Package: visionhdl

Convert color information between color spaces

Description

visionhdl.ColorSpaceConverter converts between R'G'B' and Y'CbCr color spaces,
and also converts R'G'B' to intensity.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The ColorSpaceConverter System object operates on gamma-corrected color
spaces. However, to simplify use of the System object, the property arguments do not
include the prime notation.

Construction

CSC = visionhdl.ColorSpaceConverter returns a System object, CSC, that converts
R'G'B' to Y'CbCr using the Rec. 601 (SDTV) standard.

CSC = visionhdl.ColorSpaceConverter(Name,Value) returns a System object,
CSC, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

 visionhdl.ColorSpaceConverter System object

2-15

Properties

Conversion

Conversion that the object performs on the input video stream.

• RGB to YCbCr (default)
• YCbCr to RGB

• RGB to intensity

The step method accepts input as a vector of three values representing a single pixel. If
you choose RGB to intensity, the output is a scalar value. Otherwise, the output is a
vector of three values.

ConversionStandard

Conversion equation to use on the input video stream.

• Rec. 601 (SDTV) (default)
• Rec. 709 (HDTV)

This property does not apply when you set Conversion to RGB to intensity.

ScanningStandard

Scanning standard to use for HDTV conversion.

• 1250/50/2:1 (default)
• 1125/60/2:1

This property applies when you set ConversionStandard to Rec. 709 (HDTV).

Methods

clone Create object having the same property
values

2 System Objects — Alphabetical List

2-16

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Convert one pixel between color spaces

Examples

Convert a Color Image to Grayscale

% Set the dimensions of the test image

frmActivePixels = 64;

frmActiveLines = 48;

% Load the color source image

frmOrig = imread('fabric.png');

% Select a portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels,:);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and specify size of inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create color space converter

convertrgb2gray = visionhdl.ColorSpaceConverter(...

 'Conversion','RGB to intensity');

% Serialize the test image

% pixIn is a numPixelsPerFrame-by-3 matrix.

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

 visionhdl.ColorSpaceConverter System object

2-17

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% For each pixel in the stream,

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(convertrgb2gray,pixIn(p,:),ctrlIn(p));

end

% Create deserializer with format matching that of the serializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

% Convert the pixel stream to an image frame

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

% Display the grayscale output image

if frmValid

 figure

 imshow(frmOutput,'InitialMagnification',300)

 title 'Output Image'

end

2 System Objects — Alphabetical List

2-18

Algorithm

This object implements the algorithms described on the Color Space Converter block
reference page.

See Also
Colorspace Converter | vision.ColorSpaceConverter | rgb2ycbcr |
visionhdl.FrameToPixels | ycbcr2rgb | rgb2gray

Introduced in R2015a

 clone

2-19

clone
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Create object having the same property values

Syntax

newCSC = clone(CSC)

Description

newCSC = clone(CSC) creates another instance of the ColorSpaceConverter System
object, CSC, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

CSC

visionhdl.ColorSpaceConverter System object

Output Arguments

newCSC

New ColorSpaceConverter System object that has the same property values as the
original System object.

Introduced in R2015a

2 System Objects — Alphabetical List

2-20

isLocked
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(CSC)

Description

TF = isLocked(CSC) returns the locked status, TF, of the ColorSpaceConverter
System object, CSC.

Introduced in R2015a

 release

2-21

release
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(CSC)

Description

release(CSC) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

CSC

visionhdl.ColorSpaceConverter System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-22

step
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Convert one pixel between color spaces

Syntax

[pixelOut,ctrlOut] = step(CSC,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(CSC,pixelIn,ctrlIn) converts a single pixel from
one color space to another. The input, pixelIn is a vector of three values representing
one pixel in R'G'B' or Y'CbCr color space. If the Conversion property is set to RGB to
YCbCr or YCbCr to RGB, then pixelOut is a vector of three values representing one
pixel. If the Conversion property is set to RGB to intensity, then pixelOut is a
scalar value representing one pixel.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The ColorSpaceConverter System object operates on gamma-corrected color
spaces. However, to simplify use of the System object, the property arguments do not
include the prime notation.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

 step

2-23

Input Arguments

CSC

visionhdl.ColorSpaceConverter System object.

pixelIn

Input pixel in gamma-corrected R'G'B' or Y'CbCr color space, specified as a vector of
unsigned integer values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Output pixel specified as a vector of three unsigned integer values, or a scalar unsigned
integer value.

• If you set the Conversion property to RGB to YCbCr or YCbCr to RGB, then
pixelOut is a vector representing the pixel in gamma-corrected color space.

• If you set the Conversion property to RGB to intensity, then pixelOut is a
scalar representing pixel intensity.

Supported data types:

• uint8 or uint16

2 System Objects — Alphabetical List

2-24

• fixdt(0,N,0), N = 8,9,....,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.Closing System object

2-25

visionhdl.Closing System object
Package: visionhdl

Morphological closing of binary pixel data

Description

visionhdl.Closing performs morphological dilation, followed by morphological
erosion, using the same neighborhood for both calculations. The object operates on a
stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

C = visionhdl.Closing returns a System object, C, that performs morphological
closing on a binary pixel stream.

C = visionhdl.Closing(Name,Value) returns a System object, C, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

2 System Objects — Alphabetical List

2-26

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: [0,1,0;1,1,1;0,1,0]

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Report closed pixel value based on

neighborhood

Examples

Morphological Close

Perform morphological close on a thumbnail image.

Load a source image from a file. Select a portion of the image that matches the desired
test size. This source image contains uint8 pixel intensity values. Apply a threshold to
convert to binary pixel data.

frmOrig = imread('rice.png');

 visionhdl.Closing System object

2-27

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Make the number of inactive
pixels following each active line at least double the horizontal size of the neighborhood.
Make the number of lines following each frame at least double the vertical size of the
neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

 mclose = visionhdl.Closing(...

 'Neighborhood',getnhood(strel('disk',4)));

2 System Objects — Alphabetical List

2-28

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine latency of the object. The latency of a configuration depends on the
number of active pixels in a line and the size of the neighborhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mclose,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

object latency is 546 cycles

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 visionhdl.Closing System object

2-29

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Closing block reference page.

See Also
visionhdl.Opening | vision.MorphologicalClose | visionhdl.FrameToPixels |
visionhdl.Erosion | visionhdl.Dilation | Closing | imclose

Introduced in R2015a

2 System Objects — Alphabetical List

2-30

clone
System object: visionhdl.Closing
Package: visionhdl

Create object having the same property values

Syntax

newC = clone(C)

Description

newC = clone(C) creates another instance of the Closing System object, C, that has
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

C

visionhdl.Closing System object

Output Arguments

newC

New Closing System object that has the same property values as the original System
object.

Introduced in R2015a

 isLocked

2-31

isLocked
System object: visionhdl.Closing
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(C)

Description

TF = isLocked(C) returns the locked status, TF, of the Closing System object, C.

Introduced in R2015a

2 System Objects — Alphabetical List

2-32

release
System object: visionhdl.Closing
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(C)

Description

release(C) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

C

visionhdl.Closing System object

Introduced in R2015a

 step

2-33

step
System object: visionhdl.Closing
Package: visionhdl

Report closed pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(C,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(C,pixelIn,ctrlIn) returns the next binary pixel
value, pixelOut, resulting from a morphological close operation on the neighborhood
around each input binary pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

C

visionhdl.Closing System object

2 System Objects — Alphabetical List

2-34

pixelIn

Single pixel, specified as a scalar logical value.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel transformed by a morphological operation, returned as a scalar logical
value.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.GrayscaleClosing System object

2-35

visionhdl.GrayscaleClosing System object

Package: visionhdl

Morphological closing of grayscale pixel data

Description

visionhdl.GrayscaleClosing performs a morphological dilation operation, followed
by a morphological erosion operation, using the same neighborhood for both calculations.
The object operates on a stream of pixel intensity values. You can specify a neighborhood,
or structuring element, of up to 32×32 pixels. The object implements the minimum
and maximum operations in two stages. The object finds the minimum or maximum
of each row of the neighborhood by implementing pipelined comparison trees. An
additional comparison tree finds the minimum or maximum value of the row results.
If the structuring element contains zeros that mask off pixels, the algorithm saves
hardware resources by not implementing comparators for those pixel locations.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

C = visionhdl.GrayscaleClosing returns a System object, C, that performs
morphological closing on a pixel stream.

C = visionhdl.GrayscaleClosing(Name,Value) returns a System object, C,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2 System Objects — Alphabetical List

2-36

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Report closed pixel value based on

neighborhood

Examples

Grayscale Morphological Closing

Perform morphological closing on a grayscale thumbnail image.

 visionhdl.GrayscaleClosing System object

2-37

Load a source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define the inactive pixel regions. Make the number
of inactive pixels following each active line at least double the horizontal size of the
neighborhood. Make the number of lines following each frame at least double the vertical
size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

2 System Objects — Alphabetical List

2-38

mclose = visionhdl.GrayscaleClosing(...

 'Neighborhood',ones(5,5));

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine the latency of the object. The latency of a configuration depends on
the number of active pixels in a line and the size of the neighborhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mclose,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

object latency is 388 cycles

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 visionhdl.GrayscaleClosing System object

2-39

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Grayscale Closing block
reference page.

See Also
visionhdl.GrayscaleDilation | visionhdl.GrayscaleOpening | Grayscale
Closing | vision.MorphologicalClose | imclose | visionhdl.GrayscaleErosion |
visionhdl.FrameToPixels

Introduced in R2016a

2 System Objects — Alphabetical List

2-40

clone
System object: visionhdl.GrayscaleClosing
Package: visionhdl

Create object having the same property values

Syntax

newC = clone(C)

Description

newC = clone(C) creates another instance of the GrayscaleClosing System
object, C, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

C

visionhdl.GrayscaleClosing System object

Output Arguments

newC

New GrayscaleClosing System object that has the same property values as the
original System object.

Introduced in R2016a

 isLocked

2-41

isLocked
System object: visionhdl.GrayscaleClosing
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(C)

Description

TF = isLocked(C) returns the locked status, TF, of the GrayscaleClosing System
object, C.

Introduced in R2016a

2 System Objects — Alphabetical List

2-42

release
System object: visionhdl.GrayscaleClosing
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(C)

Description

release(C) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

C

visionhdl.GrayscaleClosing System object

Introduced in R2016a

 step

2-43

step
System object: visionhdl.GrayscaleClosing
Package: visionhdl

Report closed pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(C,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(C,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from morphological closing on the neighborhood around each input
pixel intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

C

visionhdl.Closing System object

2 System Objects — Alphabetical List

2-44

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint8, uint16,uint32
• fixdt(0,N,M)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2016a

 visionhdl.DemosaicInterpolator System object

2-45

visionhdl.DemosaicInterpolator System object
Package: visionhdl

Construct full RGB pixel data from Bayer pattern pixels

Description

visionhdl.DemosaicInterpolator provides a Bayer pattern interpolation filter
for streaming video data. You can select a low complexity bilinear interpolation, or a
moderate complexity gradient-corrected bilinear interpolation. The object implements the
calculations using hardware-efficient algorithms for HDL code generation.

• The object performs bilinear interpolation on a 3×3 pixel window using only additions
and bit shifts.

• The object performs gradient correction on a 5×5 pixel window. The object implements
the calculation using bit shift, addition, and low order Canonical Signed Digit (CSD)
multiply.

Construction

D = visionhdl.DemosaicInterpolator returns a System object, D, that interpolates
R'G'B' data from a Bayer pattern pixel stream.

D = visionhdl.DemosaicInterpolator(Name,Value) returns a System object,
D, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

InterpolationAlgorithm

Algorithm the object uses to calculate the missing pixel values.

2 System Objects — Alphabetical List

2-46

• Bilinear — Average of the pixel values in the surrounding 3×3 neighborhood.
• Gradient-corrected linear (default) — Bilinear average, corrected for intensity

gradient.

SensorAlignment

Color sequence of the pixels in the input stream.

Specify the sequence of R, G, and B pixels that correspond to the 2-by-2 block of pixels in
the top-left corner of the input image. Specify the sequence in left-to-right, top-to-bottom
order. For instance, the default value, RGGB, represents an image with this pattern.

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power
of two. When you set InterpolationAlgorithm to Bilinear, the object allocates 2-
by-LineBufferSize memory locations. When you set InterpolationAlgorithm to
Gradient-corrected linear, the object allocates 4-by-LineBufferSize memory
locations.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics

 visionhdl.DemosaicInterpolator System object

2-47

step Demosaic a Bayer pattern video stream

Examples

Demosaic a Bayer Pattern Image

This example constructs full RGB pixel data from a Bayer pattern thumbnail image.

% Set the dimensions of the test image

frmActivePixels = 256;

frmActiveLines = 192;

% Load the source image

% This image is in Bayer pattern: each pixel is represented by one value,

% alternating green values with red and blue values.

frmOrig = imread('mandi.tif');

figure

imshow(frmOrig,'InitialMagnification',20)

title 'Full Image (Scaled Down)'

% Select a portion of the image matching the desired test size.

% These offsets select the face of the woman in the image.

frmInput = frmOrig(900:899+frmActiveLines, 2350:2349+frmActivePixels);

figure

imshow(frmInput)

title 'Input Image'

% Create serializer and specify size of inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create interpolator

% Specify the sequence of color values matching the 2-by-2 pixels in the top-left corner of the image.

BayerInterpolator = visionhdl.DemosaicInterpolator(...

 'SensorAlignment', 'RGGB');

2 System Objects — Alphabetical List

2-48

% Serialize the test image

% pixIn is a vector of pixel values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

[pixels,lines,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

pixOut = zeros(numPixelsPerFrame,3,'uint8');

% For each pixel in the stream, generate the {R,G,B} triplet

% Print a progress message every 32 lines

lineCount = 1;

for p = 1:numPixelsPerFrame

 if ctrlIn(p).hEnd

 lineCount = lineCount+1;

 if mod(lineCount,32)==0

 fprintf('Processing... line %d\n',lineCount);

 end

 end

 [pixOut(p,:),ctrlOut(p)] = step(BayerInterpolator,pixIn(p),ctrlIn(p));

end

% Create deserializer with format matching that of the serializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

 % Convert the pixel stream to an image frame

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput)

 title 'Output Image'

end

Processing... line 32

Processing... line 64

Processing... line 96

Processing... line 128

Processing... line 160

Processing... line 192

 visionhdl.DemosaicInterpolator System object

2-49

2 System Objects — Alphabetical List

2-50

 visionhdl.DemosaicInterpolator System object

2-51

Algorithm

This object implements the algorithms described on the Demosaic Interpolator block
reference page.

See Also
Demosaic Interpolator | vision.DemosaicInterpolator | demosaic |
visionhdl.FrameToPixels

Introduced in R2015a

2 System Objects — Alphabetical List

2-52

clone
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Create object having the same property values

Syntax

newD = clone(D)

Description

newD = clone(D) creates another instance of the DemosaicInterpolator System
object, D, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

D

visionhdl.DemosaicInterpolator System object

Output Arguments

newD

New DemosaicInterpolator System object that has the same property values as the
original System object.

Introduced in R2015a

 isLocked

2-53

isLocked
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(D)

Description

TF = isLocked(D) returns the locked status, TF, of the DemosiacInterpolator
System object, D.

Introduced in R2015a

2 System Objects — Alphabetical List

2-54

release
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(D)

Description

release(D) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

D

visionhdl.DemosaicInterpolator System object

Introduced in R2015a

 step

2-55

step
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Demosaic a Bayer pattern video stream

Syntax

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn) interpolates the missing
color values of a Bayer pattern input pixel stream, and returns the next pixel value,
pixelOut, as a vector of R'G'B' values. pixelIn represents one pixel in a Bayer pattern
image.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

D

visionhdl.DemosaicInterpolator System object.

2 System Objects — Alphabetical List

2-56

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt(0,N,0)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel, returned as a vector of three values in R'G'B' color space.

The data type of pixelOut is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.Dilation System object

2-57

visionhdl.Dilation System object

Package: visionhdl

Morphological dilation of binary pixel data

Description

visionhdl.Dilation replaces each pixel with the local maximum of the neighborhood
around the pixel. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

D = visionhdl.Dilation returns a System object, D, that performs morphological
dilation on a binary video stream.

D = visionhdl.Dilation(Name,Value) returns a System object, D, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

2 System Objects — Alphabetical List

2-58

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: [0,1,0;1,1,1;0,1,0]

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Report dilated pixel value based on

neighborhood

Examples

Morphological Dilate

Perform morphological dilate on a thumbnail image.

Load a source image from a file. Select a portion of the image that matches the desired
test size. This source image contains uint8 pixel intensity values. Apply a threshold to
convert to binary pixel data.

frmOrig = imread('rice.png');

 visionhdl.Dilation System object

2-59

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Make the number of inactive
pixels following each active line at least double the horizontal size of the neighborhood.
Make the number of lines following each frame at least double the vertical size of the
neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

 mdilate = visionhdl.Dilation(...

 'Neighborhood',getnhood(strel('disk',3)));

2 System Objects — Alphabetical List

2-60

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine latency of the object. The latency of a configuration depends on the
number of active pixels in a line and the size of the neighborhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mdilate,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

object latency is 186 cycles

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 visionhdl.Dilation System object

2-61

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Dilation block reference page.

See Also
Dilation | visionhdl.FrameToPixels | visionhdl.Erosion | vision.MorphologicalDilate |
imdilate

Introduced in R2015a

2 System Objects — Alphabetical List

2-62

clone
System object: visionhdl.Dilation
Package: visionhdl

Create object having the same property values

Syntax

newD = clone(D)

Description

newD = clone(D) creates another instance of the Dilation System object, D, that has
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

D

visionhdl.Dilation System object

Output Arguments

newD

New Dilation System object that has the same property values as the original System
object.

Introduced in R2015a

 isLocked

2-63

isLocked
System object: visionhdl.Dilation
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(D)

Description

TF = isLocked(D) returns the locked status, TF, of the Dilation System object, D.

Introduced in R2015a

2 System Objects — Alphabetical List

2-64

release
System object: visionhdl.Dilation
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(D)

Description

release(D) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

D

visionhdl.Dilation System object

Introduced in R2015a

 step

2-65

step
System object: visionhdl.Dilation
Package: visionhdl

Report dilated pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from a morphological dilation operation on the neighborhood around
each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

D

visionhdl.Dilation System object

2 System Objects — Alphabetical List

2-66

pixelIn

Single pixel, specified as a scalar logical value.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel transformed by a morphological operation, returned as a scalar logical
value.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.GrayscaleDilation System object

2-67

visionhdl.GrayscaleDilation System object

Package: visionhdl

Morphological dilation of grayscale pixel data

Description

visionhdl.GrayscaleDilation performs morphological dilation on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32
pixels. The algorithm implements a pipelined tree structure to find the maximum value
of each row of the neighborhood. An additional comparison tree finds the maximum value
of the row results. If the structuring element contains zeros that mask off pixels, the
algorithm saves hardware resources by not implementing comparators for those pixel
locations.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

D = visionhdl.GrayscaleDilation returns a System object, D, that performs
morphological dilation on a pixel stream.

D = visionhdl.GrayscaleDilation(Name,Value) returns a System object, D,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2 System Objects — Alphabetical List

2-68

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: ones(5,5)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Report dilated pixel value based on

neighborhood

Examples

Grayscale Morphological Dilation

Perform morphological dilation on a grayscale thumbnail image.

 visionhdl.GrayscaleDilation System object

2-69

Load a source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define the inactive pixel regions. Make the number
of inactive pixels following each active line at least double the horizontal size of the
neighborhood. Make the number of lines following each frame at least double the vertical
size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

2 System Objects — Alphabetical List

2-70

mdilate = visionhdl.GrayscaleDilation(...

 'Neighborhood',ones(4,4));

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine the latency of the object. The latency of a configuration depends on
the number of active pixels in a line and the size of the neighborhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mdilate,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

object latency is 190 cycles

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 visionhdl.GrayscaleDilation System object

2-71

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Grayscale Dilation block
reference page.

See Also
vision.MorphologicalDilate | visionhdl.FrameToPixels | visionhdl.GrayscaleErosion |
Grayscale Dilation | imdilate

Introduced in R2016a

2 System Objects — Alphabetical List

2-72

clone
System object: visionhdl.GrayscaleDilation
Package: visionhdl

Create object having the same property values

Syntax

newD = clone(D)

Description

newD = clone(D) creates another instance of the GrayscaleDilation System
object, C, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

D

visionhdl.GrayscaleDilation System object

Output Arguments

newD

New GrayscaleDilation System object that has the same property values as the
original System object.

Introduced in R2016a

 isLocked

2-73

isLocked
System object: visionhdl.GrayscaleDilation
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(D)

Description

TF = isLocked(D) returns the locked status, TF, of the GrayscaleDilation System
object, D.

Introduced in R2016a

2 System Objects — Alphabetical List

2-74

release
System object: visionhdl.GrayscaleDilation
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(D)

Description

release(D) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

D

visionhdl.GrayscaleDilation System object

Introduced in R2016a

 step

2-75

step
System object: visionhdl.GrayscaleDilation
Package: visionhdl

Report dilated pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(D,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from morphological dilation on the neighborhood around each input
pixel intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

D

visionhdl.GrayscaleDilation System object

2 System Objects — Alphabetical List

2-76

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint8, uint16,uint32
• fixdt(0,N,M)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2016a

 visionhdl.EdgeDetector System object

2-77

visionhdl.EdgeDetector System object
Package: visionhdl

Find edges of objects

Description

visionhdl.EdgeDetector finds the edges in a grayscale pixel stream using the
Sobel, Prewitt, or Roberts method. The object convolves the input pixels with derivative
approximation matrices to find the gradient of pixel magnitude along two orthogonal
directions. It then compares the sum of the squares of the gradients to a configurable
threshold to determine if the gradients represent an edge. The Sobel and Prewitt
methods calculate the gradient in horizontal and vertical directions. The Roberts method
calculates the gradients at 45 and 135 degrees.

The object returns a binary image, as a stream of pixel values. A pixel value of 1
indicates that the pixel is an edge. You can optionally enable output of the gradient
values in the two orthogonal directions at each pixel.

Construction

ED = visionhdl.EdgeDetector returns a System object, ED, that detects edges using
the Sobel method.

ED = visionhdl.EdgeDetector(Name,Value) returns a System object, ED, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Method

Edge detection algorithm.

2 System Objects — Alphabetical List

2-78

Specify 'Sobel', 'Prewitt', or 'Roberts' method.

Default: 'Sobel'

BinaryImageOutputPort

Enable the Edge output of the step method.

When this property is true, the step method returns a binary pixel value representing
whether the object detected an edge at each location in the frame.

Default: true

GradientComponentOutputPorts

Enable the G1 and G2 outputs of the step method.

When this property is true, the step method returns two values representing the
gradients calculated in two orthogonal directions at each pixel. Set the data type for this
argument in the GradientDataType property.

Default: false

ThresholdSource

Source for the gradient threshold value that indicates an edge.

Set this property to 'Input port' to set the threshold as an input argument to the step
method. When this property is set to 'Property', set the threshold in the Threshold
property.

Default: 'Property'

Threshold

Gradient threshold value that indicates an edge, specified as a numeric scalar value.

The object compares the square of this to the sum of the squares of the gradients. The
object casts this value to the data type of the gradients. This property applies when you
set ThresholdSource to 'Property'.

Default: 20

 visionhdl.EdgeDetector System object

2-79

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (N - 1)-by-LineBufferSize memory locations to store
the pixels, where N is the number of lines in the differential approximation matrix. If
you set the Method property to 'Sobel' or 'Prewitt', then N is 3. If you set the Method
property to 'Roberts', then N is 2.

Default: 2048

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Floor

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Wrap

GradientDataType

Data type for the gradient output values, specified as numerictype(signed,WL,FL),
where WL is the word length and FL is the fraction length in bits.

• 'Full precision' (default) — Use full-precision rules based on the data type of
the pixelIn argument of the step method, and the coefficients of the derivative
approximation matrices.

2 System Objects — Alphabetical List

2-80

• 'custom' — Use the data type defined in theCustomGradientDataType property.

CustomGradientDataType

Data type for the gradient output values, specified as numerictype(signed,WL,FL),
where WL is the word length and FL is the fraction length in bits.

Default: numerictype(1,8,0)

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Detect edges at an image pixel

Examples

Edge Detection Using Sobel Method

Detect edges in a thumbnail image using the Sobel method.

Prepare a test image by selecting a portion of an image file.

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

 visionhdl.EdgeDetector System object

2-81

Create a serializer and specify the size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create an edge detection object with the default property values. The default detection
method is Sobel.

edgeDetectSobel = visionhdl.EdgeDetector();

Serialize the test image using the object you created. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures. Preallocate vectors for the output
signals.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

edgeOut = false(numPixelsPerFrame,1);

2 System Objects — Alphabetical List

2-82

For each pixel in the stream, compute whether it represents an edge.

for p = 1:numPixelsPerFrame

 [edgeOut(p),ctrlOut(p)] = step(edgeDetectSobel,pixIn(p),ctrlIn(p));

end

Create a deserializer with a format matching that of the serializer. Use the deserializer
to convert the output pixel stream to an image frame.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,edgeOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

• “Pixel-Streaming Design in MATLAB”

 visionhdl.EdgeDetector System object

2-83

Algorithm

This object implements the algorithms described on the Edge Detector block reference
page.

See Also
Edge Detector | visionhdl.FrameToPixels | vision.EdgeDetector | edge

Introduced in R2015a

2 System Objects — Alphabetical List

2-84

clone
System object: visionhdl.EdgeDetector
Package: visionhdl

Create object having the same property values

Syntax

newED = clone(ED)

Description

newED = clone(ED) creates another instance of the EdgeDetector System object, ED,
that has the same property values. The new object is unlocked and contains uninitialized
states.

Input Arguments

ED

visionhdl.EdgeDetector System object

Output Arguments

newED

New EdgeDetector System object that has the same property values as the original
System object.

Introduced in R2015a

 isLocked

2-85

isLocked
System object: visionhdl.EdgeDetector
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(ED)

Description

TF = isLocked(ED) returns the locked status, TF, of the EdgeDetector System
object, ED.

Introduced in R2015a

2 System Objects — Alphabetical List

2-86

release
System object: visionhdl.EdgeDetector
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(ED)

Description

release(ED) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

ED

visionhdl.EdgeDetector System object

Introduced in R2015a

 step

2-87

step
System object: visionhdl.EdgeDetector
Package: visionhdl

Detect edges at an image pixel

Syntax
[edge,ctrlOut] = step(ED,pixelIn,ctrlIn)

[G1,G2,ctrlOut] = step(ED,pixelIn,ctrlIn)

[edge,ctrlOut] = step(ED,pixelIn,ctrlIn,thresh)

Description
[edge,ctrlOut] = step(ED,pixelIn,ctrlIn) detects edges in the neighborhood
of pixelIn by computing the gradient in two orthogonal directions. The edge output
argument is a binary value indicating whether the sum of the squares of the gradients
for the input pixel is above the threshold indicating an edge.

[G1,G2,ctrlOut] = step(ED,pixelIn,ctrlIn) detects edges in the neighborhood
of pixelIn by computing the gradient in two orthogonal directions. Use this syntax
when you set GradientComponentOutputPorts property to true. The G1 and G2
output arguments are the gradients calculated in the two orthogonal directions. When
you set the Method property to 'Sobel' or 'Prewitt', the first argument is the vertical
gradient, and the second argument is the horizontal gradient. When you set the Method
property to 'Roberts', the first argument is the 45 degree gradient, and the second
argument is the 135 degree gradient.

[edge,ctrlOut] = step(ED,pixelIn,ctrlIn,thresh) detects edges in the
neighborhood of pixelIn by computing the gradient in two orthogonal directions. Use
this syntax when you set ThresholdSource property to 'InputPort'. The edge output
argument is a binary value indicating whether the sum of the squares of the gradients
was above the threshold, thresh, squared.

You can use any combination of the optional port syntaxes.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and

2 System Objects — Alphabetical List

2-88

format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

ED

visionhdl.EdgeDetector System object.

pixelIn

Intensity of a single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt()

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

thresh

Gradient threshold value that indicates an edge, specified as a scalar numeric value.

The object compares this value squared to the sum of the squares of the gradients. This
argument is accepted when you set ThresholdSource property to 'InputPort'.

 step

2-89

Output Arguments

edge

Pixel value indicating an edge at this pixel, returned as a scalar binary value.

G1

Gradient calculated in the first direction, returned as a scalar value.

This argument is returned when you set GradientComponentOutputPorts property
to true. If you set the Method property to 'Sobel' or 'Prewitt', this argument is the
vertical gradient. When you set the Method property to 'Roberts', this argument is the
45 degree gradient.

Configure the data type of the gradients by using the GradientComponentDataType
and CustomGradientComponent properties.

G2

Gradient calculated in the second direction, returned as a scalar value.

This argument is returned when you set GradientComponentOutputPorts property
to true. If you set the Method property to 'Sobel' or 'Prewitt', this argument is the
horizontal gradient. When you set the Method property to 'Roberts', this argument is
the 135 degree gradient.

Configure the data type of the gradients by using the GradientComponentDataType
and CustomGradientComponent properties.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-90

visionhdl.Erosion System object

Package: visionhdl

Morphological erosion of binary pixel data

Description

visionhdl.Erosion replaces each pixel with the local minimum of the neighborhood
around the pixel. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

E = visionhdl.Erosion returns a System object, E, that performs morphological
erosion on a binary pixel stream.

E = visionhdl.Erosion(Name,Value) returns a System object, E, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

 visionhdl.Erosion System object

2-91

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Report eroded pixel value based on

neighborhood

Examples

Morphological Erode

Perform morphological erode on a thumbnail image.

Load a source image from a file. Select a portion of the image that matches the desired
test size. This source image contains uint8 pixel intensity values. Apply a threshold to
convert to binary pixel data.

frmOrig = imread('rice.png');

2 System Objects — Alphabetical List

2-92

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Make the number of inactive
pixels following each active line at least double the horizontal size of the neighborhood.
Make the number of lines following each frame at least double the vertical size of the
neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

 merode = visionhdl.Erosion(...

 'Neighborhood',ones(2,7));

 visionhdl.Erosion System object

2-93

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine latency of the object. The latency of a configuration depends on the
number of active pixels in a line and the size of the neighborhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(merode,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

object latency is 105 cycles

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

2 System Objects — Alphabetical List

2-94

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Erosion block reference page.

See Also
Erosion | vision.MorphologicalDilate | visionhdl.FrameToPixels |
vision.MorphologicalErode | imerode

Introduced in R2015a

 clone

2-95

clone
System object: visionhdl.Erosion
Package: visionhdl

Create object having the same property values

Syntax

newE = clone(E)

Description

newE = clone(E) creates another instance of the Erosion System object, E, that has
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

E

visionhdl.Erosion System object

Output Arguments

newE

New Erosion System object that has the same property values as the original System
object. The new unlocked object contains uninitialized states.

Introduced in R2015a

2 System Objects — Alphabetical List

2-96

isLocked
System object: visionhdl.Erosion
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(E)

Description

TF = isLocked(E) returns the locked status, TF, of the DemosiacInterpolator
System object, E.

Introduced in R2015a

 release

2-97

release
System object: visionhdl.Erosion
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(E)

Description

release(E) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

E

visionhdl.Erosion System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-98

step
System object: visionhdl.Erosion
Package: visionhdl

Report eroded pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(E,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(E,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the pixel stream resulting from a morphological erosion operation on the
neighborhood around each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

E

visionhdl.Erosion System object

 step

2-99

pixelIn

Single pixel, specified as a scalar logical value.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel transformed by a morphological operation, returned as a scalar logical
value.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-100

visionhdl.GrayscaleErosion System object

Package: visionhdl

Morphological erosion of grayscale pixel data

Description

visionhdl.GrayscaleErosion performs morphological erosion on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32
pixels. The algorithm implements a pipelined tree structure to find the minimum value
of each row of the neighborhood. An additional comparison tree finds the minimum value
of the row results. If the structuring element contains zeros that mask off pixels, the
algorithm saves hardware resources by not implementing comparators for those pixel
locations.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

E = visionhdl.GrayscaleErosion returns a System object, E, that performs a
morphological erosion on a pixel stream.

E = visionhdl.GrayscaleErosion(Name,Value) returns a System object, E,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

 visionhdl.GrayscaleErosion System object

2-101

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Report eroded pixel value based on

neighborhood

Examples

Grayscale Morphological Erosion

Perform morphological erosion on a grayscale thumbnail image.

2 System Objects — Alphabetical List

2-102

Load a source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define the inactive pixel regions. Make the number
of inactive pixels following each active line at least double the horizontal size of the
neighborhood. Make the number of lines following each frame at least double the vertical
size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

 visionhdl.GrayscaleErosion System object

2-103

merode = visionhdl.GrayscaleErosion(...

 'Neighborhood',ones(2,5));

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine the latency of the object. The latency of a configuration depends on
the number of active pixels in a line and the size of the neighborhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(merode,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

object latency is 109 cycles

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

2 System Objects — Alphabetical List

2-104

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Grayscale Erosion block
reference page.

See Also
visionhdl.FrameToPixels | vision.MorphologicalErode | imerode |
visionhdl.GrayscaleDilation | Grayscale Erosion

Introduced in R2016a

 clone

2-105

clone
System object: visionhdl.GrayscaleErosion
Package: visionhdl

Create object having the same property values

Syntax

newE = clone(E)

Description

newE = clone(E) creates another instance of the GrayscaleErosion System
object, E, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

E

visionhdl.GrayscaleErosion System object

Output Arguments

newE

New GrayscaleErosion System object that has the same property values as the
original System object.

Introduced in R2016a

2 System Objects — Alphabetical List

2-106

isLocked
System object: visionhdl.GrayscaleErosion
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(E)

Description

TF = isLocked(E) returns the locked status, TF, of the GrayscaleErosion System
object, E.

Introduced in R2016a

 release

2-107

release
System object: visionhdl.GrayscaleErosion
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(E)

Description

release(E) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

E

visionhdl.GrayscaleErosion System object

Introduced in R2016a

2 System Objects — Alphabetical List

2-108

step
System object: visionhdl.GrayscaleErosion
Package: visionhdl

Report eroded pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(E,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(E,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from a morphological erosion of the neighborhood around each input
pixel intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

E

visionhdl.GrayscaleErosion System object

 step

2-109

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint8, uint16,uint32
• fixdt(0,N,M)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2016a

2 System Objects — Alphabetical List

2-110

visionhdl.FrameToPixels System object

Package: visionhdl

Convert full-frame video to pixel stream

Description

visionhdl.FrameToPixels converts color or grayscale full-frame video to a pixel
stream and control structure. The control structure indicates the validity of each pixel
and its location in the frame. The pixel stream format can include padding pixels around
the active frame. You can configure the frame and padding dimensions by selecting a
common video format or specifying custom dimensions. See “Streaming Pixel Interface”
for details of the pixel stream format.

Use this object to generate input for a function targeted for HDL code generation. This
block does not support HDL code generation.

If your design converts frames to a pixel stream and later converts the stream back
to frames, specify the same video format for the FrameToPixels object and the
PixelsToFrame object.

Construction

F2P = visionhdl.FrameToPixels returns a System object, F2P, that serializes a
grayscale 1080×1920 frame into a 1080p pixel stream with standard padding around the
active data.

F2P = visionhdl.FrameToPixels(Name,Value) returns a System object, F2P,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

 visionhdl.FrameToPixels System object

2-111

Properties

NumComponents

Components of each pixel, specified as 1, 3, or 4. Set to 1 for grayscale video. Set to 3 for
color video, for example, {R,G,B} or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel
for transparency. The step method returns a P-by-NumComponents matrix, where P is
the total number of pixels. The default is 1.

VideoFormat

Dimensions of active and inactive regions of a video frame. To select a predefined format,
specify the VideoFormat property as a string from the options in the first column of
the table. For a custom format, set VideoFormat to Custom, and specify the dimension
properties as integers.

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16
576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110
768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48
1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64
2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

2 System Objects — Alphabetical List

2-112

Note: When using a custom format, the properties you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

For the horizontal direction, TotalPixelsPerLine must be greater than or equal
to FrontPorch + ActivePixelsPerLine. The block calculates BackPorch =
TotalPixelsPerLine − FrontPorch − ActivePixelsPerLine.

For the vertical direction, TotalVideoLines must be greater than or equal
to StartingActiveLine + ActiveVideoLines − 1. The block calculates
EndingActiveLine = StartingActiveLine + ActiveVideoLines − 1.

If you specify a format that does not conform to these rules, the object reports an error.

Note: When using a custom format, ActivePixelsPerLine must be greater than 1.
Also, set the horizontal blanking interval, or BackPorch + FrontPorch, according to
these guidelines.

• The total of BackPorch + FrontPorch must be at least 2 times the largest kernel size
of the algorithm in the objects following the visionhdl.FrameToPixels object. If
the kernel size is < 4, the total porch must be at least 8 pixels.

• The BackPorch must be at least 6 pixels. This parameter is the number of inactive
pixels before the first valid pixel in a frame.

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Convert image frame to pixel stream

 visionhdl.FrameToPixels System object

2-113

Examples

Convert Between Full-Frame and Pixel-Streaming Data

% This example converts a custom-size grayscale image to a pixel stream. It

% uses the visionhdl.LookupTable object to obtain the negative image. Then

% it converts the pixel-stream back to a full-frame image.

% Set the dimensions of the test image

frmActivePixels = 64;

frmActiveLines = 48;

% Load the source image

frmOrig = imread('rice.png');

% Select a portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and specify size of inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create LUT to generate the negative of the input image

tabledata = linspace(255,0,256);

inverter = visionhdl.LookupTable(tabledata);

% Serialize the test image

% pixIn is a vector of intensity values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

2 System Objects — Alphabetical List

2-114

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% For each pixel in the stream, look up the negative of the pixel value

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(inverter,pixIn(p),ctrlIn(p));

end

% Create deserializer with format matching that of the serializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

% Convert the pixel stream to an image frame

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput,'InitialMagnification',300)

 title 'Output Image'

end

 visionhdl.FrameToPixels System object

2-115

• “Pixel-Streaming Design in MATLAB”

See Also
visionhdl.PixelsToFrame | Frame To Pixels

More About
• “Streaming Pixel Interface”

Introduced in R2015a

2 System Objects — Alphabetical List

2-116

clone
System object: visionhdl.FrameToPixels
Package: visionhdl

Create object having the same property values

Syntax

newF2P = clone(F2P)

Description

newF2P = clone(F2P) creates another instance of the FrameToPixels System
object, F2P, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

F2P

visionhdl.FrameToPixels System object

Output Arguments

newF2P

New FrameToPixels System object that has the same property values as the original
object.

Introduced in R2015a

 isLocked

2-117

isLocked
System object: visionhdl.FrameToPixels
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(F2P)

Description

TF = isLocked(F2P) returns the locked status, TF, of the FrameToPixels System
object, F2P.

Introduced in R2015a

2 System Objects — Alphabetical List

2-118

release
System object: visionhdl.FrameToPixels
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(F2P)

Description

release(F2P) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

F2P

visionhdl.FrameToPixels System object

Introduced in R2015a

 step

2-119

step
System object: visionhdl.FrameToPixels
Package: visionhdl

Convert image frame to pixel stream

Syntax
[pixels,ctrlOut] = step(F2P,frm)

Description
[pixels,ctrlOut] = step(F2P,frm)

Converts the input image matrix, frm, to a vector of pixel values, pixels, and an
associated vector of control structures, ctrlOut. The control structure indicates the
validity of each pixel and its location in the frame. The output pixels include padding
around the active image, specified by the VideoFormat property.

See “Streaming Pixel Interface” for details of the pixel stream format.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments
F2P

visionhdl.FrameToPixels System object

frm

Input image, specified as an ActiveVideoLines-by-ActivePixelsPerLine-
by-NumComponents matrix, where:

2 System Objects — Alphabetical List

2-120

• ActiveVideoLines is the height of the active image
• ActivePixelsPerLine is the width of the active image
• NumComponents is the number of components used to express a single pixel

Set the size of the active image using the VideoFormat property. If the dimensions of im
do not match that specified by VideoFormat, the object returns a warning.

Supported data types:

• uint or int
• fixdt()

• logical

• double or single

Output Arguments

pixels

Pixel values, returned as a P-by-NumComponents matrix, where:

• P is the total number of pixels in the padded image, calculated as
TotalPixelsPerLine × TotalVideoLines

• NumComponents is the number of components used to express a single pixel

Set the size of the padded image using the VideoFormat property. The data type of the
pixel values is the same as im.

ctrlOut

Control structures associated with the output pixels, returned as a P-by-1 vector. P is
the total number of pixels in the padded image, calculated as TotalPixelsPerLine ×
TotalVideoLines. Each structure contains five control signals indicating the validity of
the pixel and its location in the frame. See “Pixel Control Structure”.

Introduced in R2015a

 visionhdl.GammaCorrector System object

2-121

visionhdl.GammaCorrector System object

Package: visionhdl

Apply or remove gamma correction

Description

visionhdl.GammaCorrector applies or removes gamma correction on a stream of
pixels. Gamma correction adjusts linear pixel values so that the modified values fit a
curve. The de-gamma operation performs the opposite operation to obtain linear pixel
values.

Construction

G = visionhdl.GammaCorrector returns a System object that applies or removes
gamma correction on a stream of pixels.

G = visionhdl.GammaCorrector(Name,Value) returns a System object, G, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

G = visionhdl.GammaCorrector(operation,gammaValue,Name,Value) returns
a System object with the Correction property set to operation, the Gamma property
set to gammaValue, and additional options specified by one or more Name,Value pair
arguments.

Input Arguments

operation

Type of correction, specified as either Gamma or De-gamma. This argument sets the
Correction property value.

2 System Objects — Alphabetical List

2-122

gammaValue

Target or current gamma value, specified as a scalar value greater than or equal to 1.
This argument sets the Gamma property value.

Output Arguments

G

visionhdl.GammaCorrector System object

Properties

Correction

Direction of intensity curve adjustment

• Gamma (default) — Apply gamma correction.
• De-gamma — Remove gamma correction.

Gamma

Target or current gamma value, specified as a scalar greater than or equal to 1.

• When you set Correction to Gamma, set this property to the target gamma value of
the output video stream.

• When you set Correction to De-gamma, set this property to the gamma value of the
input video stream.

Default: 2.2

LinearSegment

Option to include a linear segment in the gamma curve, specified as a logical value.
When you set this property to true, the gamma curve has a linear portion near the
origin.

Default: true

 visionhdl.GammaCorrector System object

2-123

BreakPoint

Pixel value that corresponds to the point where the gamma curve and linear segment
meet. Specify Breakpoint as a scalar value between 0 and 1, exclusive. This property
applies only when the LinearSegment property is set to true.

Default: 0.018

Methods
clone Create object with same property values
isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Apply or remove gamma correction on one

pixel

Examples
Gamma Correction

This example performs gamma correction on a thumbnail image.

% Set dimensions of the test image

frmActivePixels = 64;

frmActiveLines = 48;

% Load the source image

frmOrig = imread('rice.png');

% Select a portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and specify size of inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

2 System Objects — Alphabetical List

2-124

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create gamma corrector object

 gammacorr = visionhdl.GammaCorrector(...

 'Gamma', 1.75);

% Serialize the test image

% pixIn is a vector of intensity values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% For each pixel in the stream, compute the gamma corrected pixel value

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(gammacorr,pixIn(p),ctrlIn(p));

end

% Create deserializer with format matching that of the serializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

% Convert the pixel stream to an image frame

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

 visionhdl.GammaCorrector System object

2-125

• “Accelerate a Pixel-Streaming Design Using MATLAB Coder”

Algorithm

This object implements the algorithms described on the Gamma Corrector block
reference page.

2 System Objects — Alphabetical List

2-126

See Also
Gamma Corrector | visionhdl.FrameToPixels | vision.GammaCorrector | imadjust

Introduced in R2015a

 clone

2-127

clone
System object: visionhdl.GammaCorrector
Package: visionhdl

Create object with same property values

Syntax

newG = clone(G)

Description

newG = clone(G) creates another instance of the GammaCorrector System object,
newG, with the same property values as input argument G. The new object is unlocked
and contains uninitialized states.

Input Arguments

G

visionhdl.GammaCorrector System object

Output Arguments

newG

New GammaCorrector System object with the same property values as the original
System object.

Introduced in R2015a

2 System Objects — Alphabetical List

2-128

isLocked
System object: visionhdl.GammaCorrector
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(G)

Description

TF = isLocked(G) returns the locked status, TF, of the GammaCorrector System
object, G.

Introduced in R2015a

 release

2-129

release
System object: visionhdl.GammaCorrector
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(G)

Description

release(G) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

G

visionhdl.GammaCorrector System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-130

step
System object: visionhdl.GammaCorrector
Package: visionhdl

Apply or remove gamma correction on one pixel

Syntax

[pixelOut,ctrlOut] = step(G,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(G,pixelIn,ctrlIn) returns the intensity value of
a pixel after gamma correction, and the control signals associated with the pixel. The
input, pixelIn, and output, pixelOut, are scalar values representing a single pixel.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

G

visionhdl.GammaCorrector System object.

 step

2-131

pixelIn

Intensity of a single pixel, specified as a scalar value. For fixed-point data types, the
input word length must be less than or equal to 16.

Supported data types:

• int8 and int16
• uint8 and uint16
• fixdt()

double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Gamma-corrected intensity of a single pixel, specified as a scalar value. The data type of
the output pixel is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-132

visionhdl.Histogram System object
Package: visionhdl

Frequency distribution

Description

visionhdl.Histogram computes the frequency distribution of pixel values in a video
stream. You can configure the number and size of the bins. The object provides a read
interface for accessing each bin. The object keeps a running histogram until you clear the
bin values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

Construction

H = visionhdl.Histogram returns a System object, H, that computes image
histograms over 256 bins, with a bin size of 16 bits.

H = visionhdl.Histogram(Name,Value) returns a System object, H, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

NumBins

Number of bins for the histogram.

 visionhdl.Histogram System object

2-133

Choose the number of bins depending on the input word length (WL). If the number of
bins is less than 2WL, the object truncates the least-significant bits of each pixel. If the
number of bins is greater than 2WL, the object warns about an inefficient use of hardware
resources.

Default: 256

OutputDataType

Data type of the histogram values.

• double

• single

• Unsigned fixed point (default)

double and single data types are supported for simulation but not for HDL code
generation.

OutputWordLength

Histogram bin value word length when OutputDataType is Unsigned fixed point.
If a bin overflows, the count saturates and the object shows a warning.

Default: 16

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Sort input pixel into histogram bin, or read

histogram bin

2 System Objects — Alphabetical List

2-134

Examples

Compute Histogram of an Image

% Set dimensions of the test image

frmActivePixels = 64;

frmActiveLines = 48;

% Load source image

frmOrig = imread('rice.png');

% Select portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and define inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create histogram object

% The default setting is 256 bins

histo = visionhdl.Histogram();

bins = str2double(histo.NumBins);

% Serialize the test image

% pixIn is a vector of intensity values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

readRdy = false(numPixelsPerFrame,1);

dataOut = zeros(bins-1,1,'uint8');

validOut = false(bins-1,1);

noOpCtrl = pixelcontrolstruct(0,0,0,0,0);

 visionhdl.Histogram System object

2-135

noAddr = uint8(0);

noReset = false;

% Call the object with noOp input to initialize the bin memory

for p = 1:bins

 step(histo,uint8(0),noOpCtrl,noAddr,noReset)

end

% For each pixel in the padded frame, sort the pixel into a bin

% readRdy is returned true 2 cycles after the active frame is complete

for p = 1:numPixelsPerFrame

 [~,readRdy(p),~] = step(histo,pixIn(p),ctrlIn(p),noAddr,noReset);

end

% Read the bin values

if readRdy(numPixelsPerFrame)

 for p = 1:bins+1

 if (p < bins-1)

 % Read a normal bin

 % Bin addresses are 0:bins-1

 [dataOut(p),~,validOut(p)] = step(histo,uint8(0),noOpCtrl,uint8(p-1),noReset);

 elseif (p == bins-1)

 % Read the final bin value and initiate binReset

 [dataOut(p),~,validOut(p)] = step(histo,uint8(0),noOpCtrl,uint8(bins-1),true);

 elseif (p >= bins)

 % Flush final bin values with 2 more calls to step

 [dataOut(p),~,validOut(p)] = step(histo,uint8(0),noOpCtrl,noAddr,noReset);

 end

 end

end

% Graph the bin values

dataOut = dataOut(validOut==1);

figure

bar(dataOut)

title('Histogram of Input Image')

% Call the object with noOp input to clear the bin memory

for p = 1:bins-2

 step(histo,uint8(0),noOpCtrl,noAddr,noReset);

end

ans =

2 System Objects — Alphabetical List

2-136

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

 visionhdl.Histogram System object

2-137

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

2 System Objects — Alphabetical List

2-138

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 visionhdl.Histogram System object

2-139

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

2 System Objects — Alphabetical List

2-140

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 visionhdl.Histogram System object

2-141

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

2 System Objects — Alphabetical List

2-142

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 visionhdl.Histogram System object

2-143

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

2 System Objects — Alphabetical List

2-144

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 visionhdl.Histogram System object

2-145

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

2 System Objects — Alphabetical List

2-146

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

 visionhdl.Histogram System object

2-147

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

2 System Objects — Alphabetical List

2-148

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 visionhdl.Histogram System object

2-149

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

2 System Objects — Alphabetical List

2-150

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 visionhdl.Histogram System object

2-151

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

2 System Objects — Alphabetical List

2-152

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 visionhdl.Histogram System object

2-153

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

2 System Objects — Alphabetical List

2-154

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

 visionhdl.Histogram System object

2-155

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

2 System Objects — Alphabetical List

2-156

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 visionhdl.Histogram System object

2-157

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

2 System Objects — Alphabetical List

2-158

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 visionhdl.Histogram System object

2-159

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

2 System Objects — Alphabetical List

2-160

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 visionhdl.Histogram System object

2-161

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

2 System Objects — Alphabetical List

2-162

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 visionhdl.Histogram System object

2-163

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

2 System Objects — Alphabetical List

2-164

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

 visionhdl.Histogram System object

2-165

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

2 System Objects — Alphabetical List

2-166

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 visionhdl.Histogram System object

2-167

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

2 System Objects — Alphabetical List

2-168

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 visionhdl.Histogram System object

2-169

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

2 System Objects — Alphabetical List

2-170

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 visionhdl.Histogram System object

2-171

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

2 System Objects — Alphabetical List

2-172

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

 visionhdl.Histogram System object

2-173

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

2 System Objects — Alphabetical List

2-174

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 visionhdl.Histogram System object

2-175

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

2 System Objects — Alphabetical List

2-176

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 visionhdl.Histogram System object

2-177

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

2 System Objects — Alphabetical List

2-178

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 visionhdl.Histogram System object

2-179

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

2 System Objects — Alphabetical List

2-180

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 visionhdl.Histogram System object

2-181

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

2 System Objects — Alphabetical List

2-182

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

 visionhdl.Histogram System object

2-183

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

2 System Objects — Alphabetical List

2-184

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 visionhdl.Histogram System object

2-185

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

2 System Objects — Alphabetical List

2-186

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 visionhdl.Histogram System object

2-187

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

2 System Objects — Alphabetical List

2-188

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Unsigned

 WordLength: 16

 FractionLength: 0

 visionhdl.Histogram System object

2-189

Algorithm

This object implements the algorithms described on the Histogram block reference page.

See Also
visionhdl.FrameToPixels | Histogram | vision.Histogram | imhist

Introduced in R2015a

2 System Objects — Alphabetical List

2-190

clone
System object: visionhdl.Histogram
Package: visionhdl

Create object having the same property values

Syntax

newH = clone(H)

Description

newH = clone(H) creates another instance of the Histogram System object, H, that
has the same property values. The new object is unlocked and contains uninitialized
states.

Input Arguments

H

visionhdl.Histogram System object

Output Arguments

newH

New Histogram System object that has the same property values as the original System
object. The new unlocked object contains uninitialized states.

Introduced in R2015a

 isLocked

2-191

isLocked
System object: visionhdl.Histogram
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, of the Histogram System object, H.

Introduced in R2015a

2 System Objects — Alphabetical List

2-192

release
System object: visionhdl.Histogram
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

H

visionhdl.Histogram System object

Introduced in R2015a

 step

2-193

step

System object: visionhdl.Histogram
Package: visionhdl

Sort input pixel into histogram bin, or read histogram bin

Syntax

step(H,~,~,~,~)

[dataOut,readRdy,validOut] = step(H,pixelIn,ctrlIn,~,0)

[dataOut,readRdy,validOut] = step(H,~,~,binAddr,0)

[dataOut,readRdy,validOut] = step(H,~,~,binAddr,binReset)

Description

step(H,~,~,~,~) performs an initial reset phase before processing input data. After
object creation or reset, call step with dummy arguments for NumberOfBins cycles
before applying data. You do not have to assert binReset during this phase.

[dataOut,readRdy,validOut] = step(H,pixelIn,ctrlIn,~,0) adds the input
pixel, pixelIn, to the internal histogram. Call step with this syntax for each pixel in a
frame. The object returns readRdy true when the histogram for the frame is complete.

[dataOut,readRdy,validOut] = step(H,~,~,binAddr,0) reads the histogram
bin specified by binAddr. Use this syntax when readRdy is returned true. Call step
with this syntax for each histogram bin. The bin value at binAddr is returned in
dataOut, with validOut set to true, after two further calls to step.

[dataOut,readRdy,validOut] = step(H,~,~,binAddr,binReset) resets
the histogram values when binReset is true. You can initiate the reset while
simultaneously giving the final binAddr. Before applying more video data, complete the
reset sequence by calling step with dummy arguments for NumBins cycles.

To visualize the sequence of operations, see the timing diagrams in the “Algorithm” on
page 1-84 section of the Histogram block page.

2 System Objects — Alphabetical List

2-194

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

H

visionhdl.Histogram System object.

pixelIn

Single pixel, specified by a scalar value.

Supported data types:

• uint

• fixdt(0,N,0)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

binAddr

Bin number request for reading histogram values. This input is captured after readRdy
is returned true. The data type is fixdt(0,N,0), N = 5,6,...,10. The word length must
be log2(NumBins).

binReset

Triggers histogram RAM reset when true. Reset takes NumBins cycles to clear all
locations. Input signals are ignored during this interval. Data type is logical.

 step

2-195

Output Arguments

readRdy

Flag indicating when the histogram bins are ready for read, returned as a logical
value. The object returns readRdy set to true two cycles after the final pixel of a frame.

dataOut

Histogram value for the bin requested in binAddr. The OutputDataType property
specifies the data type for this output.

validOut

Flag indicating the validity of dataOut, returned as a logical value.

Introduced in R2015a

2 System Objects — Alphabetical List

2-196

visionhdl.ImageFilter System object

Package: visionhdl

2-D FIR filtering

Description

visionhdl.ImageFilter performs two-dimensional FIR filtering on a pixel stream.

Construction

F = visionhdl.ImageFilter returns a System object, F, that performs two-
dimensional FIR filtering on an input pixel stream.

F = visionhdl.ImageFilter(Name,Value) returns a 2-D FIR filter System object,
F, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

F = visionhdl.ImageFilter(coeff,lineSize,Name,Value) returns a 2-
D FIR filter System object, F, with the Coefficients property set to coeff, the
LineBufferSize property to lineSize, and additional options specified by one or more
Name,Value pair arguments.

Input Arguments

coeff

Filter coefficients, specified as a vector or matrix. The maximum size along any
dimension of this matrix or vector is 16. This argument sets the Coefficients property
value.

 visionhdl.ImageFilter System object

2-197

lineSize

Size of the line memory buffer, specified as a power of two that accommodates the
number of active pixels in a horizontal line. This argument sets the LineBufferSize
property value.

Output Arguments

F

visionhdl.ImageFilter System object

Properties

Coefficients

Coefficients of the filter, specified as a vector or matrix of any numeric type. The
maximum size along any dimension of this matrix or vector is 16.

double and single data types are supported for simulation but not for HDL code
generation.

Default: [1,0;0,-1]

CoefficientsDataType

Method for determining the data type of the filter coefficients.

• 'Same as first input ' (default) — Sets the data type of the coefficients to match
the data type of the pixelIn argument of the step method.

• 'custom' — Sets the data type of the coefficients to match the data type defined in the
CustomCoefficientsDataType property.

CustomCoefficientsDataType

Data type for the filter coefficients, specified as numerictype(signed,WL,FL), where
WL is the word length and FL is the fraction length in bits. This property applies when
you set CoefficientsDataType to 'custom'.

Default: numerictype(true,16,15)

2 System Objects — Alphabetical List

2-198

CustomOutputDataType

Data type for the output pixels, specified as numerictype(signed,WL,FL), where WL
is the word length and FL is the fraction length in bits. This property applies only when
you set OutputDataType to custom.

Default: numerictype(true,8,0)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (coefficient rows – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

OutputDataType

Method for determining the data type of the output pixels.

• 'Same as first input' (default) — Sets the data type of the output pixels to match
the data type of the pixelIn argument of the step method.

• 'full precision' — Computes internal and output data types using full precision
rules. These rules provide accurate fixed-point numerics and prevent quantization
within the object. Bits are added, as needed, to prevent rounding and overflow.

• 'custom' — Sets the data type of the output pixels to match the data type you define
in the CustomOutputDataType property.

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Wrap

 visionhdl.ImageFilter System object

2-199

PaddingMethod

Method for padding the boundary of the input image. See “Edge Padding”.

• 'Constant' (default) — Pads the input matrix with a constant value.
• 'Replicate' — Repeats the value of pixels at the edge of the image.
• 'Symmetric' — Pads the input matrix with its mirror image.

PaddingValue

Constant value used to pad the boundary of the input image. This property applies when
you set PaddingMethod to 'Constant'. The object casts this value to the same data type
as the input pixel.

Default: 0

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Floor

Methods

clone Create object with same property values
isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step 2-D FIR filtering

Examples

Filter a Pixel-Stream

This example implements a 2-D blur filter on a thumbnail image.

2 System Objects — Alphabetical List

2-200

% Set dimensions of the test image

frmActivePixels = 64;

frmActiveLines = 48;

% Load image source

frmOrig = imread('rice.png');

% Select a portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and define inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create filter object

 filt2d = visionhdl.ImageFilter(...

 'Coefficients',ones(2,2)/4,...

 'CoefficientsDataType','Custom',...

 'CustomCoefficientsDataType',numerictype(0,1,2),...

 'PaddingMethod','Symmetric');

% Serialize the test image

% pixIn is a vector of intensity values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% For each pixel in the padded frame, compute the filtered value

% Monitor the control signals to determine latency of the object

% The latency of a filter configuration depends on:

 visionhdl.ImageFilter System object

2-201

% * the number of active pixels in a line

% * the size of the filter kernel

% * optimization of symmetric or duplicate coefficients

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(filt2d,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% Create deserializer with format matching that of the serializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

% Convert the pixel stream to an image frame

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

ans =

object latency is 101 cycles

2 System Objects — Alphabetical List

2-202

Algorithm

This object implements the algorithms described on the Image Filter block reference
page.

 visionhdl.ImageFilter System object

2-203

See Also
Image Filter | visionhdl.FrameToPixels | vision.ImageFilter | imfilter

Introduced in R2015a

2 System Objects — Alphabetical List

2-204

clone
System object: visionhdl.ImageFilter
Package: visionhdl

Create object with same property values

Syntax

newF = clone(F)

Description

newF = clone(F) creates another instance of the ImageFilter System object, F, with
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

F

visionhdl.ImageFilter System object.

Output Arguments

newF

New ImageFilter System object with the same property values as the original System
object.

Introduced in R2015a

 isLocked

2-205

isLocked
System object: visionhdl.ImageFilter
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(F)

Description

TF = isLocked(F) returns the locked status, TF, of the ImageFilter System object, F.

Introduced in R2015a

2 System Objects — Alphabetical List

2-206

release
System object: visionhdl.ImageFilter
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(F)

Description

release(F) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB®, but once you release its resources, you cannot use that System object again.

Input Arguments

F

visionhdl.ImageFilter System object

Introduced in R2015a

 step

2-207

step
System object: visionhdl.ImageFilter
Package: visionhdl

2-D FIR filtering

Syntax

[pixelOut,ctrlOut] = step(F,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(F,pixelIn,ctrlIn) returns the next pixel,
pixelOut, of the filtered image resulting from applying the coefficients in the
Coefficients property to the image described by the input pixel stream, pixelIn.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

F

visionhdl.ImageFilter System object.

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint or int

2 System Objects — Alphabetical List

2-208

• fixdt()

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single filtered pixel, returned as a scalar value.

Configure the data type of the output pixel by using the OutputDataType and
CustomOutputDataType properties.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.ImageStatistics System object

2-209

visionhdl.ImageStatistics System object
Package: visionhdl

Mean, variance, and standard deviation

Description

visionhdl.ImageStatistics calculates the mean, variance, and standard deviation
of streaming video data. Each calculation is performed over all pixels in the input region
of interest (ROI). The object implements the calculations using hardware-efficient
algorithms.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

• To change the size and dimensions of the ROI, you can manipulate the input video
stream control signals. See “Regions of Interest” on page 1-121.

• The number of valid pixels in the input image affect the accuracy of the mean
approximation. To avoid approximation error, use an image that contains fewer
than 64 pixels, a multiple of 64 pixels up to 642 pixels, a multiple of 4096 pixels up
to 643 pixels, or a multiple of 643 pixels up to 644 pixels. For details of the mean
approximation, see “Algorithm” on page 1-117.

• The object calculates statistics over frames up to 644 (16,777,216) pixels in size.

Construction

S = visionhdl.ImageStatistics returns a System object, S, that calculates the
mean, variance, and standard deviation of each frame of a video stream.

S = visionhdl.ImageStatistics(Name,Value) returns a System object, S,
with additional options specified by one or more Name,Value pair arguments. Name

2 System Objects — Alphabetical List

2-210

is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

mean

Calculate the mean of each input frame. If you set this property to false, the step
method does not return this output.

Default: true

variance

Calculate the variance of each input frame. If you set this property to false, the step
method does not return this output.

Default: true

stdDev

Calculate the standard deviation of each input frame. If you set this property to false,
the step method does not return this output.

Default: true

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics

 visionhdl.ImageStatistics System object

2-211

step Calculate the contribution of one pixel to
the mean, variance, and standard deviation
of a video stream

Examples

Compute Statistics of an Image

This example computes the mean, variance, and standard deviation of a thumbnail
image.

% Set dimensions of the test image

frmActivePixels = 64;

frmActiveLines = 48;

% Load image source

frmOrig = imread('rice.png');

% Select a portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and define inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

 % Create object that returns mean, variance, and standard deviation

 stats = visionhdl.ImageStatistics();

% Serialize the test image

% pixIn is a vector of intensity values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

2 System Objects — Alphabetical List

2-212

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

validOut = false(numPixelsPerFrame,1);

mean = zeros(numPixelsPerFrame,1,'uint8');

variance = zeros(numPixelsPerFrame,1,'uint8');

stddev = zeros(numPixelsPerFrame,1,'uint8');

% For each pixel in the stream, increment the internal statistics

for p = 1:numPixelsPerFrame

 [mean(p),variance(p),stddev(p),validOut(p)] = step(stats,pixIn(p),ctrlIn(p));

end

% The results are valid when validOut is returned true

mean = mean(validOut==1)

variance = variance(validOut==1)

stddev = stddev(validOut==1)

mean =

 125

variance =

 255

stddev =

 36

 visionhdl.ImageStatistics System object

2-213

Algorithm

This object implements the algorithms described on the Image Statistics block
reference page.

See Also
Image Statistics | vision.Variance | visionhdl.FrameToPixels | vision.Mean |
vision.StandardDeviation | mean2 | std2

Introduced in R2015a

2 System Objects — Alphabetical List

2-214

clone
System object: visionhdl.ImageStatistics
Package: visionhdl

Create object having the same property values

Syntax

newS = clone(S)

Description

newS = clone(S) creates another instance of the ImageStatistics System object, S,
that has the same property values. The new object is unlocked and contains uninitialized
states.

Input Arguments

S

visionhdl.ImageStatistics System object

Output Arguments

newS

New ImageStatistics System object that has the same property values as the original
System object.

Introduced in R2015a

 isLocked

2-215

isLocked
System object: visionhdl.ImageStatistics
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(S)

Description

TF = isLocked(S) returns the locked status, TF, of the ImageStatistics System
object, S.

Introduced in R2015a

2 System Objects — Alphabetical List

2-216

release
System object: visionhdl.ImageStatistics
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(S)

Description

release(S) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

S

visionhdl.ImageStatisticsSystem object

Introduced in R2015a

 step

2-217

step

System object: visionhdl.ImageStatistics
Package: visionhdl

Calculate the contribution of one pixel to the mean, variance, and standard deviation of a
video stream

Syntax

[mean,variance,stdDeviation,validOut] = step(S,pixelIn,ctrlIn)

Description

[mean,variance,stdDeviation,validOut] = step(S,pixelIn,ctrlIn)

incorporates the new pixel value, pixelIn, into calculations of video frame statistics.
The control signals associated with each pixel, ctrlIn, indicate the frame boundaries.
When validOut is true, the output values of mean, variance, and stdDeviation
represent the statistics for the most recent input frame completed. The number of
statistics returned depends on the object property settings.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2 System Objects — Alphabetical List

2-218

Input Arguments

S

visionhdl.ImageStatistics System object.

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

mean

Mean of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn.

variance

Variance of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn. The fixed-point output word length is double the
input word length.

stdDeviation

Standard deviation of the most recent frame of video input, returned as a scalar value.

 step

2-219

The data type is the same as pixelIn. Fixed-point output word length is double the
input word length.

validOut

Validity of output statistics. When the object completes the calculations, it returns true.
When this output is true, the other output arguments are valid. Data type is logical.

Introduced in R2015a

2 System Objects — Alphabetical List

2-220

visionhdl.LookupTable System object
Package: visionhdl

Map input pixel to output pixel using custom rule

Description
The visionhdl.LookupTable System object uses a custom one-to-one map to convert
between an input pixel value and an output pixel value.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction
LUT = visionhdl.LookupTable returns a System object, LUT, that performs a one-
to-one mapping between the input pixel and output pixel, according to the lookup table
contents.

LUT = visionhdl.LookupTable(tabledata) returns a lookup table System object,
LUT, with the table contents set to TABLEDATA.

Input Arguments

tabledata

One-to-one correspondence between input pixels and output pixels, specified as a vector.
This argument sets the Table property value.

Output Arguments

LUT

visionhdl.visionhdl.LookupTable System object

 visionhdl.LookupTable System object

2-221

Properties
Table

Map between input pixel values and output pixel values.

• The table data is a vector, row or column, of any data type. The data type of the table
data determines that of pixelOut. See visionhdl.LookupTable.step method.

• The length of the table data must equal 2WordLength, where WordLength is the size, in
bits, of pixelIn. See visionhdl.LookupTable.step method.

• The smallest representable value of the input data type maps to the first element
of the table, the second smallest value maps to the second element, and so on. For
example, if pixelIn has a data type of fixdt(0,3,1), the input value 0 maps to the
first element of the table, input value 0.5 maps to the second element, 1 maps to the
third, and so on.

Default: uint8(0:1:255)

Methods
clone Create object with same property values
isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Map input pixel to output pixel based on

table contents

Examples
Compute Negative Image

This example creates the negative of an image by looking up the opposite pixel values in
a table.

% Set dimensions of test image

frmActivePixels = 64;

frmActiveLines = 48;

2 System Objects — Alphabetical List

2-222

% Load image source

frmOrig = imread('rice.png');

% Select a portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and define inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

 % Create lookup table object

 % The input pixel data is uint8 type, so the negative value is 255-|pixel|.

 % The output pixel data type is the same as the data type of the table contents.

 tabledata = uint8(linspace(255,0,256));

 inverter = visionhdl.LookupTable(tabledata);

% Serialize the test image

% pixIn is a vector of intensity values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% For each pixel in the padded frame, look up the negative value

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(inverter,pixIn(p),ctrlIn(p));

end

% Create deserializer with format matching that of the serializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 visionhdl.LookupTable System object

2-223

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

% Convert the pixel stream to an image frame

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2 System Objects — Alphabetical List

2-224

Algorithm

This object implements the algorithms described on the Lookup Table block reference
page.

See Also
visionhdl.FrameToPixels | Lookup Table

Introduced in R2015a

 clone

2-225

clone
System object: visionhdl.LookupTable
Package: visionhdl

Create object with same property values

Syntax

newLUT = clone(LUT)

Description

newLUT = clone(LUT) creates another instance of the LookupTable System object,
newLUT, with the same property values as input argument LUT. The new object is
unlocked and contains uninitialized states.

Input Arguments

LUT

visionhdl.LookupTable System object

Output Arguments

newLUT

New LookupTable System object with the same property values as the original System
object.

Introduced in R2015a

2 System Objects — Alphabetical List

2-226

isLocked
System object: visionhdl.LookupTable
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(LUT)

Description

TF = isLocked(LUT) returns the locked status, TF, of the LookupTable System
object, LUT.

Introduced in R2015a

 release

2-227

release
System object: visionhdl.LookupTable
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(LUT)

Description

release(LUT) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

LUT

visionhdl.LookupTable System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-228

step
System object: visionhdl.LookupTable
Package: visionhdl

Map input pixel to output pixel based on table contents

Syntax

[pixelOut,ctrlOut] = step(LUT,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(LUT,pixelIn,ctrlIn) returns the pixel value,
pixelOut, located in the table at the address specified by the input pixel value,
pixelIn. The object passes the control signals, ctrlIn, through and aligns the output
control signals, ctrlOut, with the output data.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

LUT

visionhdl.LookupTable System object

 step

2-229

pixelIn

Input pixel, specified as a scalar value. For unsigned fixed-point data types, the input
word length must be less than or equal to 16.

Supported data types:

• logical

• uint8 or uint16
• fixdt()

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Output pixel, returned as a scalar value. The data type of the output is the same as the
data type of the entries you specify in the Table property.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2 System Objects — Alphabetical List

2-230

visionhdl.MedianFilter System object

Package: visionhdl

2-D median filtering

Description

visionhdl.MedianFilter performs 2-D median filtering on a pixel stream. The object
replaces each pixel value with the median value of the adjacent pixels.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

MF = visionhdl.MedianFilter returns a System object, MF, that performs two-
dimensional median filtering of serial pixel data.

MF = visionhdl.MedianFilter(Name,Value) returns a median filter System object,
MF, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

MF = visionhdl.MedianFilter(size,Name,Value) returns a median filter System
object, MF, with the NeighborhoodSize property set to size and additional options
specified by one or more Name,Value pair arguments.

 visionhdl.MedianFilter System object

2-231

Input Arguments

size

Size in pixels of the image region used to compute the median. This argument sets the
NeighborhoodSize property value.

Output Arguments

MF

visionhdl.MedianFilter System object.

Properties

NeighborhoodSize

Neighborhood size, in pixels.

• '3×3' (default)
• '5×5'
• '7×7'

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power of
two. The object allocates N - 1-by-LineBufferSize memory locations to store the pixels
used to compute the median value. N is the number of lines in the square region specified
in Neighborhood size.

Default: 2048

PaddingMethod

Method for padding the boundary of the input image

• 'Constant' — Pad input matrix with a constant value.
• 'Replicate' — Repeat the value of pixels at the edge of the image.

2 System Objects — Alphabetical List

2-232

• 'Symmetric' (default) — Pad image edge with its mirror image.

PaddingValue

Constant value used to pad the boundary of the input image. This property applies when
you set PaddingMethod to 'Constant'. The object casts this value to the same data type
as the input pixel.

Default: 0

Methods

clone Create object with same property values
isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Median pixel value of neighborhood

Examples

Median Filter on a Pixel-Stream

This example implements a 5×5 median filter on a thumbnail image.

% Set the dimensions of the test image

frmActivePixels = 64;

frmActiveLines = 48;

% Load image source

frmOrig = imread('rice.png');

% Select a portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and define inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 visionhdl.MedianFilter System object

2-233

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

% Create filter

 mfilt = visionhdl.MedianFilter(...

 'NeighborhoodSize','5x5');

% Serialize the test image

% pixIn is a vector of intensity values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% For each pixel in the padded frame, compute the local median

% Monitor control signals to determine latency of the object

% The latency of a filter configuration depends on:

% * the number of active pixels in a line

% * the size of the neighbourhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mfilt,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

% Create deserializer with format matching that of the serializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

2 System Objects — Alphabetical List

2-234

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

% Convert the pixel stream to an image frame

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

ans =

object latency is 177 cycles

 visionhdl.MedianFilter System object

2-235

Algorithm

This object implements the algorithms described on the Median Filter block reference
page.

See Also
Median Filter | visionhdl.FrameToPixels | medfilt2

Introduced in R2015a

2 System Objects — Alphabetical List

2-236

clone
System object: visionhdl.MedianFilter
Package: visionhdl

Create object with same property values

Syntax

newF = clone(F)

Description

newF = clone(F) creates another instance of the MedianFilter System object, F,
with the same property values. The new object is unlocked and contains uninitialized
states.

Input Arguments

F

visionhdl.MedianFilter System object

Output Arguments

newF

New MedianFilter System object with the same property values as the original System
object.

Introduced in R2015a

 isLocked

2-237

isLocked
System object: visionhdl.MedianFilter
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(F)

Description

TF = isLocked(F) returns the locked status, TF, of the MedianFilter System object,
F.

Introduced in R2015a

2 System Objects — Alphabetical List

2-238

release
System object: visionhdl.MedianFilter
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(F)

Description

release(F) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

F

visionhdl.MedianFilter System object

Introduced in R2015a

 step

2-239

step
System object: visionhdl.MedianFilter
Package: visionhdl

Median pixel value of neighborhood

Syntax

[pixelOut,ctrlOut] = step(F,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(F,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, in the filtered pixel stream resulting from calculating the median of the
neighborhood around each input pixel, pixelIn. Before filtering, the object pads image
edges according to the PaddingMethod property.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

F

visionhdl.MedianFilter System object.

2 System Objects — Alphabetical List

2-240

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt(~,N,0)

• logical

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel value representing the median of its neighborhood, returned as a scalar
value.

The data type is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.Opening System object

2-241

visionhdl.Opening System object
Package: visionhdl

Morphological opening of binary pixel data

Description

visionhdl.Opening performs morphological erosion, followed by morphological
dilation, using the same neighborhood for both calculations. The object operates on a
stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

O = visionhdl.Opening returns a System object, O, that performs morphological
opening on a binary pixel stream.

O = visionhdl.Opening(Name,Value) returns a System object, O, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

2 System Objects — Alphabetical List

2-242

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Report opened pixel value based on

neighborhood

Examples

Morphological Open

Perform morphological open on a thumbnail image.

Load a source image from a file. Select a portion of the image that matches the desired
test size. This source image contains uint8 pixel intensity values. Apply a threshold to
convert to binary pixel data.

frmOrig = imread('rice.png');

 visionhdl.Opening System object

2-243

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Make the number of inactive
pixels following each active line at least double the horizontal size of the neighborhood.
Make the number of lines following each frame at least double the vertical size of the
neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

 mopen = visionhdl.Opening(...

 'Neighborhood',ones(5,5));

2 System Objects — Alphabetical List

2-244

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine latency of the object. The latency of a configuration depends on the
number of active pixels in a line and the size of the neighborhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mopen,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

object latency is 372 cycles

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 visionhdl.Opening System object

2-245

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Opening block reference page.

See Also
visionhdl.Dilation | vision.MorphologicalOpen | visionhdl.Erosion | visionhdl.Closing |
Opening | imopen | visionhdl.FrameToPixels

Introduced in R2015a

2 System Objects — Alphabetical List

2-246

clone
System object: visionhdl.Opening
Package: visionhdl

Create object having the same property values

Syntax

newH = clone(O)

Description

newH = clone(O) creates another instance of the Opening System object, O, that has
the same property values. The new object is unlocked and contains uninitialized states.

Input Arguments

O

visionhdl.Opening System object

Output Arguments

newO

New Opening System object that has the same property values as the original System
object. The new unlocked object contains uninitialized states.

Introduced in R2015a

 isLocked

2-247

isLocked
System object: visionhdl.Opening
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(O)

Description

TF = isLocked(O) returns the locked status, TF, of the DemosiacInterpolator
System object, O.

Introduced in R2015a

2 System Objects — Alphabetical List

2-248

release
System object: visionhdl.Opening
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(O)

Description

release(O) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

O

visionhdl.Opening System object

Introduced in R2015a

 step

2-249

step
System object: visionhdl.Opening
Package: visionhdl

Report opened pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(O,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(O,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from a morphological open operation on the neighborhood around
each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

O

visionhdl.Opening System object

2 System Objects — Alphabetical List

2-250

pixelIn

Single pixel, specified as a scalar logical value.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel transformed by a morphological operation, returned as a scalar logical
value.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

 visionhdl.GrayscaleOpening System object

2-251

visionhdl.GrayscaleOpening System object

Package: visionhdl

Morphological opening of grayscale pixel data

Description

visionhdl.GrayscaleOpening performs morphological erosion, followed by
morphological dilation, using the same neighborhood for both calculations. The object
operates on a stream of pixel intensity values. You can specify a neighborhood, or
structuring element, of up to 32×32 pixels. The object implements the minimum and
maximum operations in two stages. The object finds the minimum or maximum of each
row of the neighborhood by implementing pipelined comparison trees. An additional
comparison tree finds the minimum or maximum value of the row results. If the
structuring element contains zeros that mask off pixels, the algorithm saves hardware
resources by not implementing comparators for those pixel locations.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

O = visionhdl.GrayscaleOpening returns a System object, O, that performs
morphological opening on a pixel stream.

O = visionhdl.GrayscaleOpening(Name,Value) returns a System object, O,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2 System Objects — Alphabetical List

2-252

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Report opened pixel value based on

neighborhood

Examples

Grayscale Morphological Opening

Perform morphological opening on a grayscale thumbnail image.

 visionhdl.GrayscaleOpening System object

2-253

Load a source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define the inactive pixel regions. Make the number
of inactive pixels following each active line at least double the horizontal size of the
neighborhood. Make the number of lines following each frame at least double the vertical
size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

2 System Objects — Alphabetical List

2-254

mopen = visionhdl.GrayscaleOpening(...

 'Neighborhood',ones(2,7));

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine the latency of the object. The latency of a configuration depends on
the number of active pixels in a line and the size of the neighborhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = step(mopen,pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

object latency is 222 cycles

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 visionhdl.GrayscaleOpening System object

2-255

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Grayscale Opening block
reference page.

See Also
visionhdl.GrayscaleDilation | visionhdl.GrayscaleClosing | Grayscale
Opening | vision.MorphologicalOpen | imopen | visionhdl.GrayscaleErosion |
visionhdl.FrameToPixels

Introduced in R2016a

2 System Objects — Alphabetical List

2-256

clone
System object: visionhdl.GrayscaleOpening
Package: visionhdl

Create object having the same property values

Syntax

newO = clone(O)

Description

newO = clone(O) creates another instance of the GrayscaleOpening System
object, O, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

O

visionhdl.GrayscaleOpening System object

Output Arguments

newO

New GrayscaleOpening System object that has the same property values as the
original System object.

Introduced in R2016a

 isLocked

2-257

isLocked
System object: visionhdl.GrayscaleOpening
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(O)

Description

TF = isLocked(O) returns the locked status, TF, of the GrayscaleOpening System
object, O.

Introduced in R2016a

2 System Objects — Alphabetical List

2-258

release
System object: visionhdl.GrayscaleOpening
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(O)

Description

release(O) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

O

visionhdl.GrayscaleOpening System object

Introduced in R2016a

 step

2-259

step
System object: visionhdl.GrayscaleOpening
Package: visionhdl

Report opened pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(O,pixelIn,ctrlIn)

Description

[pixelOut,ctrlOut] = step(O,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from morphological opening on the neighborhood around each input
pixel intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

O

visionhdl.GrayscaleOpening System object

2 System Objects — Alphabetical List

2-260

pixelIn

Single pixel, specified as a scalar value.

Supported data types:

• uint8, uint16,uint32
• fixdt(0,N,M)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2016a

 visionhdl.PixelsToFrame System object

2-261

visionhdl.PixelsToFrame System object

Package: visionhdl

Convert pixel stream to full-frame video

Description

visionhdl.visionhdl.PixelsToFrame converts a color or grayscale pixel stream
and control structures into full-frame video. The control structure indicates the validity
of each pixel and its location in the frame. The pixel stream format can include padding
pixels around the active frame. You can configure the frame and padding dimensions by
selecting a common video format or specifying custom dimensions. See “Streaming Pixel
Interface” for details of the pixel stream format.

Use this object to convert the output of a function targeted for HDL code generation back
to frames. This object does not support HDL code generation.

If your design converts frames to a pixel stream and later converts the stream back
to frames, specify the same video format for the FrameToPixels object and the
PixelsToFrame object.

Construction

P2F = visionhdl.PixelsToFrame returns a System object, P2F, that converts a
1080p pixel stream, with standard padding, to a grayscale 1080×1920 frame.

P2F = visionhdl.PixelsToFrame(Name,Value) returns a System object, P2F,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2 System Objects — Alphabetical List

2-262

Properties

NumComponents

Components of each pixel, specified as 1, 3, or 4. Set to 1 for grayscale video. Set to 3 for
color video, for example, {R,G,B} or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel
for transparency. The step method expects a matrix of P-by-NumComponents values,
where P is the total number of pixels. The default is 1.

VideoFormat

Dimensions of the active region of a video frame. To select a predefined format, specify
the VideoFormat property as a string from the options in the first column of the
table. For a custom format, set VideoFormat to 'Custom', and specify the dimensional
properties as integers.

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

 visionhdl.PixelsToFrame System object

2-263

Methods
clone Create object having the same property

values
isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Convert pixel stream to image frame

Examples
Convert Between Full-Frame and Pixel-Streaming Data

% This example converts a custom-size grayscale image to a pixel stream. It

% uses the visionhdl.LookupTable object to obtain the negative image. Then

% it converts the pixel-stream back to a full-frame image.

% Set the dimensions of the test image

frmActivePixels = 64;

frmActiveLines = 48;

% Load the source image

frmOrig = imread('rice.png');

% Select a portion of the image matching the desired test size

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

% Create serializer and specify size of inactive pixel regions

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

2 System Objects — Alphabetical List

2-264

% Create LUT to generate the negative of the input image

tabledata = linspace(255,0,256);

inverter = visionhdl.LookupTable(tabledata);

% Serialize the test image

% pixIn is a vector of intensity values

% ctrlIn is a vector of control signal structures

[pixIn,ctrlIn] = step(frm2pix,frmInput);

% Prepare to process pixels

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

% For each pixel in the stream, look up the negative of the pixel value

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(inverter,pixIn(p),ctrlIn(p));

end

% Create deserializer with format matching that of the serializer

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

% Convert the pixel stream to an image frame

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput,'InitialMagnification',300)

 title 'Output Image'

end

 visionhdl.PixelsToFrame System object

2-265

• “Pixel-Streaming Design in MATLAB”

See Also
visionhdl.FrameToPixels | Pixels To Frame

More About
• “Streaming Pixel Interface”

2 System Objects — Alphabetical List

2-266

Introduced in R2015a

 clone

2-267

clone
System object: visionhdl.PixelsToFrame
Package: visionhdl

Create object having the same property values

Syntax

newP2F = clone(P2F)

Description

newP2F = clone(P2F) creates another instance of the PixelsToFrame System
object, P2F, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

P2F

visionhdl.PixelsToFrame System object

Output Arguments

newP2F

New PixelsToFrame System object that has the same property values as the original
object.

Introduced in R2015a

2 System Objects — Alphabetical List

2-268

isLocked
System object: visionhdl.PixelsToFrame
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(P2F)

Description

TF = isLocked(P2F) returns the locked status, TF, of the PixelsToFrame System
object, P2F.

Introduced in R2015a

 release

2-269

release
System object: visionhdl.PixelsToFrame
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(P2F)

Description

release(P2F) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

P2F

visionhdl.PixelsToFrame System object

Introduced in R2015a

2 System Objects — Alphabetical List

2-270

step
System object: visionhdl.PixelsToFrame
Package: visionhdl

Convert pixel stream to image frame

Syntax

[frm,validOut] = step(P2F,pixels,ctrlIn)

Description

[frm,validOut] = step(P2F,pixels,ctrlIn)

Converts a vector of pixel values representing a padded image, pixels, and an
associated vector of control structures, ctrlIn, to an image matrix, frm. The control
structure indicates the validity of each pixel and its location in the frame. The output
image, frm is valid if validOut is true.

See “Streaming Pixel Interface” for details of the pixel stream format.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

P2F

visionhdl.PixelsToFrame System object

pixels

Pixel values, specified as a P-by-NumComponents matrix, where:

 step

2-271

• P is the total number of pixels in the padded image, calculated as
TotalPixelsPerLine × TotalVideoLines

• NumComponents is the number of components used to express a single pixel

Set the size of the padded image using the VideoFormat property. If the number of
elements in pixels does not match that specified by VideoFormat, The object returns a
warning.

Supported data types:

• uint or int
• fixdt()

• logical

• double or single

ctrlIn

Control structures associated with the input pixels, specified as a P-by-1 vector. P is
the total number of pixels in the padded image, calculated as TotalPixelsPerLine ×
TotalVideoLines. Each structure contains five control signals indicating the validity
of the pixel and its location in the frame. See “Pixel Control Structure”. If the dimensions
indicated by ctrlIn do not match that specified by VideoFormat, the object returns a
warning.

Output Arguments

frm

Full-frame image, returned as an ActiveVideoLines-by-ActivePixelsPerLine-
by-NumComponents matrix, where:

• ActiveVideoLines is the height of the active image
• ActivePixelsPerLine is the width of the active image
• NumComponents is the number of components used to express a single pixel

Set the size of the active image using the VideoFormat property. The data type of the
pixel values is the same as pixels.

2 System Objects — Alphabetical List

2-272

validOut

Frame status, returned as a logical value. When validOut is true, the frame is
reassembled and ready for use.

Introduced in R2015a

 visionhdl.ROISelector System object

2-273

visionhdl.ROISelector System object
Package: visionhdl

Select region of interest (ROI) from pixel stream

Description

The visionhdl.ROISelector System object selects a portion of the active frame from a
video stream. The total size of the frame remains the same. The control signals indicate a
new active region of the frame. The diagram shows the inactive pixel regions in blue and
the requested output region outlined in orange.

You can specify a fixed size and location for the new frame, or select the frame location
in real time via an input argument. You can select more than one region. Define each
region by the upper-left corner coordinates and the dimensions. The object returns one
set of pixels and control signals for each region you specify. The object sets the inactive
pixels in the output frame to zero. Regions are independent from each other, so they
can overlap. If you specify a region that includes the edge of the active frame, the object
returns only the active portion of the region. The diagram shows the output frames for

2 System Objects — Alphabetical List

2-274

three requested regions. The second output region (treetops) does not include the inactive
region above the frame.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Construction

ROI = visionhdl.ROISelector returns a System object, ROI, that selects a default
region of the active frame from an input stream.

ROI = visionhdl.ROISelector(Name,Value) returns a System object, ROI,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

RegionsSource

Location of the output region definitions.

'Property' — Specify the regions in the Regions property.

 visionhdl.ROISelector System object

2-275

'Input port' — Specify the regions using arguments to the step method. Each
argument is a 1-by-4 vector specifying coordinates for a single region. The object captures
the value of the region input ports when it receives vStart set to true in the input
control structure.

Default: 'Property'

Regions

Rectangular regions of interest to select from the input frame, specified as a N-by-4
matrix.

N is the number of regions. You can select up to 16 regions. The four elements that
define each region are the top-left starting coordinates and the dimensions, [hPos
vPos hSize vSize]. The coordinates count from the upper-left corner of the active
frame, defined as [1,1]. hSize must be greater than 1. The regions are independent of
each other, so they can overlap. This property applies when you set RegionsSource to
'Property'.

Default: [100 100 50 50]

NumberofRegions

Number of region arguments to the step method, specified as a positive integer.

You can select up to 16 regions. This property applies when you set RegionsSource to
'Input port'.

Default: 1

Methods

clone Create object having the same property
values

isLocked Locked status (logical)
release Allow changes to property values and input

characteristics
step Return next pixel in reselected frame

2 System Objects — Alphabetical List

2-276

Examples

Select Region of Interest

Select a fixed region of interest (ROI) from an input frame.

Load a source image from a file.

frmOrig = imread('coins.png');

[frmActiveLines,frmActivePixels] = size(frmOrig);

imshow(frmOrig)

title 'Input Image'

Create a serializer object and define inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 visionhdl.ROISelector System object

2-277

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create an object to select a region of interest. Define a rectangular region by the
coordinates of the top-left corner and the dimensions.

hPos = 80;

vPos = 60;

hSize = 65;

vSize = 50;

roicoin = visionhdl.ROISelector('Regions',[hPos vPos hSize vSize])

roicoin =

 visionhdl.ROISelector with properties:

 RegionsSource: 'Property'

 Regions: [80 60 65 50]

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

[pixIn,ctrlIn] = step(frm2pix,frmOrig);

Prepare to process pixels by preallocating output vectors. The output frame is the same
size as the input frame, but the control signals indicate a different active region.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, apply the region mask.

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = step(roicoin,pixIn(p),ctrlIn(p));

end

Create a deserializer object with format matching the new region. Convert the pixel
stream to an image frame by calling step on the deserializer object. Display the
resulting image.

2 System Objects — Alphabetical List

2-278

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',hSize,...

 'ActiveVideoLines',vSize);

[frmOutput,frmValid] = step(pix2frm,pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput)

 title 'Output Image'

end

Algorithm

The generated HDL code for the visionhdl.ROISelector System object uses two 32-
bit counters. It does not use additional counters for additional regions.

Latency

The object has a latency of three cycles. The object returns the output pixel and
associated control signals on the third call to the step method after the pixel value was
applied.

See Also
ROI Selector | visionhdl.FrameToPixels

Introduced in R2016a

 clone

2-279

clone
System object: visionhdl.ROISelector
Package: visionhdl

Create object having the same property values

Syntax

newROI = clone(ROI)

Description

newROI = clone(ROI) creates another instance of the ROISelector System object,
ROI, that has the same property values. The new object is unlocked and contains
uninitialized states.

Input Arguments

ROI

visionhdl.ROISelector System object

Output Arguments

newROI

New ROISelector System object that has the same property values as the original
System object.

Introduced in R2016a

2 System Objects — Alphabetical List

2-280

isLocked
System object: visionhdl.ROISelector
Package: visionhdl

Locked status (logical)

Syntax

TF = isLocked(ROI)

Description

TF = isLocked(ROI) returns the locked status, TF, of the ROISelector System
object, ROI.

Introduced in R2016a

 release

2-281

release
System object: visionhdl.ROISelector
Package: visionhdl

Allow changes to property values and input characteristics

Syntax

release(ROI)

Description

release(ROI) releases system resources (such as memory, file handles, or hardware
connections), allowing you to change System object properties and input characteristics.

Input Arguments

ROI

visionhdl.ROISelector System object

Introduced in R2016a

2 System Objects — Alphabetical List

2-282

step
System object: visionhdl.ROISelector
Package: visionhdl

Return next pixel in reselected frame

Syntax

[pixel1,ctrl1] = step(ROI,pixelIn,ctrlIn)

[pixel1,ctrl1,...,pixelN,ctrlN] = step(ROI,pixelIn,ctrlIn)

[pixel1,ctrl1,...,pixelN,ctrlN] =

step(ROI,pixelIn,ctrlIn,region1,...,regionN)

Description

[pixel1,ctrl1] = step(ROI,pixelIn,ctrlIn) returns the next pixel value,
pixel1, and control signals, ctrl1, resulting from masking the active image frame into
a single new region. Define the region by setting the Regions property to a 1-by-4 vector,
[hPos vPos hSize vSize].

[pixel1,ctrl1,...,pixelN,ctrlN] = step(ROI,pixelIn,ctrlIn) returns the
next pixel values, pixel1,...,pixelN, and control signals, ctrl1,...,ctrlN, of each
stream resulting from masking the active image frame into 1 to N new active regions, as
directed by the Regions property. Set the Regions property to a N-by-4 matrix of region
coordinates.

[pixel1,ctrl1,...,pixelN,ctrlN] =

step(ROI,pixelIn,ctrlIn,region1,...,regionN) returns the next pixel values
of each stream, pixel1,...,pixelN, resulting from masking the active image frame
into 1 to N new regions, as directed by the region1,...,regionN arguments. Each
region input is a 1-by-4 vector of region coordinates. Use this syntax when you set the
RegionsSource property to 'Input Port', and the NumberOfRegions property to N.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method

 step

2-283

accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

ROI

visionhdl.ROISelector System object

pixelIn

Input pixel, specified as a scalar integer value.

• Any numeric data type.

double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

region1,...,regionN

Regions of interest, specified as a 1-by-4 vector of coordinates.

The four elements that define each region are [hPos vPos hSize vSize]. Use this
argument when RegionsSource is set to 'Input port'. You can specify N regions,
where N is the NumberOfRegions property value.

2 System Objects — Alphabetical List

2-284

Output Arguments

pixel1,...,pixelN

Output pixels, specified as 1 to N scalar integers.

If you set RegionsSource to 'Input port', N is the value in NumberOfRegions. If you
set RegionsSource to 'Property', N is the number of columns in the Regions property.

ctrl1,...,ctrlN

Control signals indicating the validity of each output pixel and the location of each pixel
within the frame, returned as 1 to N structures of five logical signals. See “Pixel
Control Structure”.

If you set RegionsSource to 'Input port', N is the value in NumberOfRegions. If you
set RegionsSource to 'Property', N is the number of columns in the Regions property.

Introduced in R2016a

3

Functions — Alphabetical List

3 Functions — Alphabetical List

3-2

getparamfromfrm2pix
Get frame format parameters

Syntax

[activePixelsPerLine,activeLines,numPixelsPerFrame] =

getparamfromfrm2pix(frm2pix)

Description

[activePixelsPerLine,activeLines,numPixelsPerFrame] =

getparamfromfrm2pix(frm2pix) returns video format parameters from a
visionhdl.FrameToPixels System object.

Examples

Configure Pixel Stream Format

When you choose a standard video format for visionhdl.FrameToPixels, the object
computes the frame dimensions. To access these values, call the getparamfromfrm2pix
function.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','240p');

[activePixels,activeLines,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix)

activePixels =

 320

activeLines =

 240

 getparamfromfrm2pix

3-3

numPixelsPerFrame =

 130248

Note that numPixelsPerFrame includes both active and inactive regions of the frame.

Input Arguments

frm2pix — Video serializer
visionhdl.FrameToPixels System object

The visionhdl.FrameToPixels object converts framed video to a stream of pixel
values and control signals. It contains useful parameters regarding the video format.

Output Arguments

activePixelsPerLine — Number of pixels in a horizontal line of the active video frame
positive integer

Number of pixels in a horizontal line of the active video frame, returned as a positive
integer.

For custom video formats, this value corresponds to the ActivePixelsPerLine
property of the frm2pix object.

activeLines — Number of horizontal lines in the active video frame
positive integer

Number of horizontal lines in the active video frame, returned as a positive integer.

For custom video formats, this value corresponds to the ActiveVideoLines property of
the frm2pix object.

numPixelsPerFrame — Number of active and inactive pixels in the video frame
positive integer

Number of active and inactive pixels in the video frame, returned as a positive integer.

3 Functions — Alphabetical List

3-4

For custom video formats, this value corresponds to the product of the
TotalVideoLines and TotalPixelsPerLine properties of the frm2pix object.

More About
• “Streaming Pixel Interface”

See Also
Frame To Pixels | Pixels To Frame

Introduced in R2015a

 pixelcontrolbus

3-5

pixelcontrolbus
Create pixel-streaming control bus instance

Syntax
pixelcontrolbus

Description
pixelcontrolbus declares a bus instance in the workspace. This instance is required
for HDL code generation. Call this function before you generate HDL code from Vision
HDL Toolbox blocks.

Examples

Declare Bus in Base Workspace

In the InitFcn callback function of your Simulink model, include this line to declare
a bus instance in the base workspace. If you create your model with the Vision HDL
Toolbox model template, this is done for you.

evalin('base','pixelcontrolbus')

If you do not declare an instance of pixelcontrolbus in the base workspace, you might
encounter this error when you generate HDL code in Simulink.

Cannot resolve variable 'pixelcontrol'

More About
• “Configure the Simulink Environment for HDL Video Processing”
• “Streaming Pixel Interface”

See Also
“Pixel Control Bus” | Frame To Pixels | Pixels To Frame

3 Functions — Alphabetical List

3-6

Introduced in R2015a

 pixelcontrolsignals

3-7

pixelcontrolsignals

Extract signals from pixel-streaming control signal structure

Syntax

hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl)

Description

hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl) extracts five
scalar logical control signals from a structure.

Examples

Create and Decompose pixelcontrol structures

If you integrate Vision HDL Toolbox designs with algorithms that use a different
interface, you may need to create the structure manually, or manipulate the control
signals outside of the structure.

Create a pixelcontrol structure by passing five control signal values to the
pixelcontrolstruct function. The function arguments must be scalar values. These
control signals may come from a camera or other video input source. The control signal
vectors in this example describe a simple 2-by-3 pixel test image, surrounded by padding
pixels.

3 Functions — Alphabetical List

3-8

hStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];

vStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

hEnd = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0];

vEnd = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0];

valid = [0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0];

pixel = uint8([0 0 0 0 0 0 0 30 60 90 0 0 0 120 150 180 0 0 0 0 0 0 0 0]);

[~,numPix] = size(pixel);

ctrlIn = repmat(pixelcontrolstruct,numPix,1);

for i=1:numPix

 ctrlIn(i) = pixelcontrolstruct(hStart(i),vStart(i),...

 hEnd(i),vEnd(i),valid(i));

end

Each element of ctrlIn is a structure containing the five control signals.

ctrlIn(8)

ans =

 hStart: 1

 hEnd: 1

 vStart: 0

 vEnd: 0

 valid: 1

You can then pass this structure to the step method of a Vision HDL Toolbox System
object. This example uses the LookupTable object to invert each pixel.

 pixelcontrolsignals

3-9

tabledata = uint8(linspace(255,0,256));

inverter = visionhdl.LookupTable(tabledata);

pixelOut = zeros(numPix,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPix,1);

for i=1:numPix

 [pixelOut(i),ctrlOut(i)] = step(inverter,pixel(i),ctrlIn(i));

end

If you need to use the control signals directly in downstream algorithms, you
can flatten each structure into five logical control signal values by calling the
pixelcontrolsignals function.

[hStartOut,vStartOut,hEndOut,vEndOut,validOut] = deal(false(numPix,1));

for i=1:numPix

 [hStartOut(i),vStartOut(i),hEndOut(i),vEndOut(i),validOut(i)] = ...

 pixelcontrolsignals(ctrlOut(i));

end

Each output control signal is a vector of logical values that correspond with the
pixelOut vector.

validOut'

ans =

 Columns 1 through 13

 0 0 0 0 0 0 0 0 0 1 1 1 0

 Columns 14 through 24

 0 0 1 1 1 0 0 0 0 0 0

Input Arguments
ctrl — Pixel control signals
structure containing five logical values

Pixel control signals, specified as a structure containing five logical values.

The pixel control structure is a specific format used by Vision HDL Toolbox objects. See
“Pixel Control Structure”.

3 Functions — Alphabetical List

3-10

Output Arguments

hStart — Control signal indicating the first pixel in a horizontal line
logical

Control signal indicating the first pixel in a horizontal line, specified as a logical
scalar.

hEnd — Control signal indicating the last pixel in a horizontal line
logical

Control signal indicating the last pixel in a horizontal line, specified as a logical scalar.

vStart — Control signal indicating the first pixel in the first (top) line
logical

Control signal indicating the first pixel in the first (top) line, specified as a logical
scalar.

vEnd — Control signal indicating the last pixel in the last (bottom) line
logical

Control signal indicating the last pixel in the last (bottom) line, specified as a logical
scalar.

valid — Control signal indicating the validity of the pixel
logical

Control signal indicating the validity of the pixel, specified as a logical scalar.

More About
• “Streaming Pixel Interface”

See Also
visionhdl.FrameToPixels | visionhdl.PixelsToFrame | pixelcontrolstruct

Introduced in R2015a

 pixelcontrolstruct

3-11

pixelcontrolstruct

Create pixel-streaming control signal structure

Syntax

ctrl = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid)

Description

ctrl = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid) creates a
structure containing the five control signals used by Vision HDL Toolbox objects. The
input arguments must be five scalars of logical type. See “Pixel Control Structure”.

Examples

Create and Decompose pixelcontrol structures

If you integrate Vision HDL Toolbox designs with algorithms that use a different
interface, you may need to create the structure manually, or manipulate the control
signals outside of the structure.

Create a pixelcontrol structure by passing five control signal values to the
pixelcontrolstruct function. The function arguments must be scalar values. These
control signals may come from a camera or other video input source. The control signal
vectors in this example describe a simple 2-by-3 pixel test image, surrounded by padding
pixels.

3 Functions — Alphabetical List

3-12

hStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];

vStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

hEnd = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0];

vEnd = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0];

valid = [0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0];

pixel = uint8([0 0 0 0 0 0 0 30 60 90 0 0 0 120 150 180 0 0 0 0 0 0 0 0]);

[~,numPix] = size(pixel);

ctrlIn = repmat(pixelcontrolstruct,numPix,1);

for i=1:numPix

 ctrlIn(i) = pixelcontrolstruct(hStart(i),vStart(i),...

 hEnd(i),vEnd(i),valid(i));

end

Each element of ctrlIn is a structure containing the five control signals.

ctrlIn(8)

ans =

 hStart: 1

 hEnd: 1

 vStart: 0

 vEnd: 0

 valid: 1

You can then pass this structure to the step method of a Vision HDL Toolbox System
object. This example uses the LookupTable object to invert each pixel.

 pixelcontrolstruct

3-13

tabledata = uint8(linspace(255,0,256));

inverter = visionhdl.LookupTable(tabledata);

pixelOut = zeros(numPix,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPix,1);

for i=1:numPix

 [pixelOut(i),ctrlOut(i)] = step(inverter,pixel(i),ctrlIn(i));

end

If you need to use the control signals directly in downstream algorithms, you
can flatten each structure into five logical control signal values by calling the
pixelcontrolsignals function.

[hStartOut,vStartOut,hEndOut,vEndOut,validOut] = deal(false(numPix,1));

for i=1:numPix

 [hStartOut(i),vStartOut(i),hEndOut(i),vEndOut(i),validOut(i)] = ...

 pixelcontrolsignals(ctrlOut(i));

end

Each output control signal is a vector of logical values that correspond with the
pixelOut vector.

validOut'

ans =

 Columns 1 through 13

 0 0 0 0 0 0 0 0 0 1 1 1 0

 Columns 14 through 24

 0 0 1 1 1 0 0 0 0 0 0

Input Arguments

hStart — Control signal indicating the first pixel in a horizontal line
logical

Control signal indicating the first pixel in a horizontal line, specified as a logical
scalar.

3 Functions — Alphabetical List

3-14

hEnd — Control signal indicating the last pixel in a horizontal line
logical

Control signal indicating the last pixel in a horizontal line, specified as a logical scalar.

vStart — Control signal indicating the first pixel in the first (top) line
logical

Control signal indicating the first pixel in the first (top) line, specified as a logical
scalar.

vEnd — Control signal indicating the last pixel in the last (bottom) line
logical

Control signal indicating the last pixel in the last (bottom) line, specified as a logical
scalar.

valid — Control signal indicating the validity of the pixel
logical

Control signal indicating the validity of the pixel, specified as a logical scalar.

Output Arguments

ctrl — Pixel control signals
structure containing five logical values

Pixel control signals, specified as a structure containing five logical values.

The pixel control structure is a specific format used by Vision HDL Toolbox objects. See
“Pixel Control Structure”.

More About
• “Streaming Pixel Interface”

See Also
visionhdl.FrameToPixels | visionhdl.PixelsToFrame | pixelcontrolsignals

 pixelcontrolstruct

3-15

Introduced in R2015a

